K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1) Ta có: P=4

nên \(x-2\sqrt{x}+22=4\sqrt{x}+12\)

\(\Leftrightarrow x-6\sqrt{x}+10=0\)(Vô lý)

3) Thay \(x=3-2\sqrt{2}\) vào P, ta được:

\(P=\dfrac{3-2\sqrt{2}-2\left(\sqrt{2}-1\right)+22}{\sqrt{2}-1+3}\)

\(=\dfrac{3-2\sqrt{2}-2\sqrt{2}+2+22}{2+\sqrt{2}}\)

\(=\dfrac{27-4\sqrt{2}}{2+\sqrt{2}}\)

\(=\dfrac{\left(27-4\sqrt{2}\right)\left(\sqrt{2}-1\right)}{\sqrt{2}}\)

\(=\dfrac{\left(27\sqrt{2}-8\right)\left(\sqrt{2}-1\right)}{2}\)

\(=\dfrac{54-27\sqrt{2}-8\sqrt{2}+8}{2}\)

\(=\dfrac{64-35\sqrt{2}}{2}\)

31 tháng 7 2018

hình như đề bài bị sai số thì phải bạn ạ

mình giải cứ bị lệch số ấy

Bài 1: 

a: \(P=\dfrac{x+\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}+1}{1}=\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\)

b: \(x=2+2\sqrt{5}+2-2\sqrt{5}=4\)

Khi x=4 thì \(P=\dfrac{4+2+1}{2}=\dfrac{7}{2}\)

 

a: \(P=\dfrac{x\sqrt{x}+26\sqrt{x}-19-2x-6\sqrt{x}+x-4\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{x\sqrt{x}-x+16\sqrt{x}-16}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}=\dfrac{x+16}{\sqrt{x}+3}\)

b: Khi \(x=7-4\sqrt{3}\) vào P, ta được:

\(P=\dfrac{7-4\sqrt{3}+16}{2-\sqrt{3}+3}=\dfrac{23-4\sqrt{3}}{5-\sqrt{3}}\)

7 tháng 11 2018

ĐKXĐ :x\(\ge\)0;x\(\ne\)1;x\(\ne\)3

\(A=\dfrac{x\sqrt{x}+26\sqrt{x}-19-2x-6\sqrt{x}+x-\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

=\(\dfrac{x\sqrt{x}-x+16\sqrt{x}-16}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

=\(\dfrac{\left(\sqrt{x}-1\right)\left(x+16\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

=\(\dfrac{x+16}{\sqrt{x}+3}\)

7 tháng 11 2018

b, x =(\(\sqrt{2}-1)^2\)

Thay x =(\(\sqrt{2}-1)^2\)thỏa mãn đk vào a có:

A=\(\dfrac{\left(\sqrt{2}-1\right)^2+16}{\sqrt{\left(\sqrt{2}-1\right)^2}}\)

=\(\dfrac{2-2\sqrt{2}+1+16}{\sqrt{2}-1}\)

=\(\dfrac{19\sqrt{2}+19-4-2\sqrt{2}}{2-1}\)

=\(17\sqrt{2}+15\)

24 tháng 6 2018

......................?

mik ko biết

mong bn thông cảm 

nha ................

20 tháng 10 2020

Bài 1 : 

+) ĐKXĐ  : \(\hept{\begin{cases}x\ge0\\x\ne9\end{cases}}\)

a) Ta có : 

\(x=4-2\sqrt{3}\)

\(\Leftrightarrow x=3-2\sqrt{3}+1\)

\(\Leftrightarrow x=\left(\sqrt{3}-1\right)^2\)( Thỏa mãn ĐKXĐ ) 

Vậy tại \(x=\left(\sqrt{3}-1\right)^2\)thì giá trị của biểu thức A là : 

\(A=\frac{\sqrt{\left(\sqrt{3}-1\right)^2}+1}{\sqrt{\left(\sqrt{3}-1\right)^2}-3}=\frac{\sqrt{3}-1+1}{\sqrt{3}-1-3}=\frac{\sqrt{3}}{\sqrt{3}-4}=\frac{-\sqrt{3}\left(\sqrt{3}+4\right)}{7}\)

b) 

\(B=\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\)

\(B=\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(B=\frac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(B=\frac{-3-3\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\frac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

Ta có :

\(P=A:B\)

\(\Leftrightarrow P=\frac{\sqrt{x}+1}{\sqrt{x}-3}:\frac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(\Leftrightarrow P=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{-3\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}\)

\(\Leftrightarrow P=\frac{-\sqrt{x}-3}{3}\)

c) \(P=\frac{-\sqrt{x}-3}{3}\ge0\)

Dấu bằng xảy ra 

\(\Leftrightarrow-\sqrt{x}-3=0\)

\(\Leftrightarrow\sqrt{x}=-3\)( vô lí )

Vậy không tìm được giá trị nào của x để P đạt GTNN