Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy các số nguyên tố lớn hơn 5 nâng lên lũy thừa có số mũ chia hết cho 4 thì có tận cùng là 1.
VD:74=2401;118=214358881,...
=>Ta có:
p8n +3.p4n -4
=(...1)+3.(...1)-4
=(...1)+(...3)-4
=(...4)-4
=(...0) chia hết cho 5
Vậy p là số nguyên tố lớn hơn 5 thì p8n +3.p4n -4 chia hết cho 5
p8n +3.p4n -4
=p4n.2+3.p4n-4
=(p4n)2+3.p4n-4
=p4n.p4n+3.p4n-4
=p4n.(p4n+3)-4
Vì p là số nguyên tố, p>5, nên:
p ko chia hết cho 5. p chia cho 5 dư 1,2,3,4.
Mà p4n.(p4n+3)-4 => p4n.(p4n+3)-4 chia 5 dư 4.
=> p chia 5 dư 4 => p4n.(p4n+3)-4 chia hết cho 5.
=> p8n +3.p4n -4 chia hết cho 5.
=>ĐPCM.
Ta thấy các số nguyên tố lớn hơn 5 nâng lên lũy thừa có số mũ chia hết cho 4 thì có tận cùng là 1.
VD:74=2401;118=214358881,...
=>Ta có:
p8n +3.p4n -4
=(...1)+3.(...1)-4
=(...1)+(...3)-4
=(...4)-4
=(...0) chia hết cho 5
Vậy p là số nguyên tố lớn hơn 5 thì p8n +3.p4n -4 chia hết cho 5
Đặt n = 2k , ta có ( đk k >= 1 do n là một số chẵn lớn hơn 4)
\(\left(2k\right)^4-4\times\left(2k\right)^3-4\times\left(2k\right)^2+16\times2k\)
\(=16k^4-32k^3-16k^2+32k\)
\(=16k^2\left(k^2-1\right)-32k\left(k^2-1\right)\)
\(=16k\times k\left(k-1\right)\left(k+1\right)-32\times k\left(k-1\right)\left(k+1\right)\)
Nhận xét \(\left(k-1\right)k\left(k+1\right)\) là 3 số tự nhiên liên tiếp nên
\(\left(k-1\right)k\left(k+1\right)\) chia hết cho 3
Suy ra điều cần chứng minh
câu 1:
a, giả sử 2 số chẵn liên tiếp là 2k và (2k+2) ta có:
2k(2k+2) = 4k2+4k = 4k(k+1) chia hết cho 8 vì 4k chia hết cho 4, k(k+1) chia hết cho 2
b, giả sử 3 số nguyên liên tiếp là a,a+1,a+2 với mọi a thuộc Z
- a,a+1,a+2 là 3 số nguyên liên tiếp nên tồn tại duy nhất một số chẵn hoặc có 2 số chẵn nên tích của chúng sẽ chia hết cho 2.
mặt khác vì là 3 số tự nhiên liên tiếp nên sẽ chia hết cho 3.
vậy tích của 3 số nguyên liên tiếp chia hết cho 6.
c, giả sử 5 số nguyên liên tiếp là a,a+1,a+2, a+3,a+4 với mọi a thuộc Z
- vì là 5 số nguyên liên tiếp nên sẽ tồn tại 2 số chẵn liên tiếp nên theo ý a tích của chúng choa hết cho 8.
- tích của 3 số nguyên liên tiếp chia hết cho 3.
- tích của 5 số nguyên liên tiếp chia hết cho 5.
vậy tích của 5 số nguyên liên tiếp chia hết cho 120.
câu 2:
a, a3 + 11a = a[(a2 - 1)+12] = (a - 1)a(a+1) + 12a
- (a - 1)a(a+1) chia hết cho 6 ( theo ý b câu 1)
- 12a chia hết cho 6.
vậy a3 + 11a chia hết cho 6.
b, ta có a3 - a = a(a2 - 1) = (a-1)a(a+1) chia hết cho 3 (1)
mn(m2-n2) = m3n - mn3 = m3n - mn + mn - mn3 = n( m3 - m) - m(n3 -n)
theo (1) mn(m2-n2) chia hết cho 3.
c, ta có: a(a+1)(2a+10 = a(a+1)(a -1+ a +2) = [a(a+1)(a - 1) + a(a+1)(a+2)] chia hết cho 6.( théo ý b bài 1)
p8n +3.p4n -4
=p4n.2+3.p4n-4
=(p4n)2+3.p4n-4
=p4n.p4n+3.p4n-4
=p4n.(p4n+3)-4
Vì p là số nguyên tố, p>5, nên:
p ko chia hết cho 5. p chia cho 5 dư 1,2,3,4.
Mà p4n.(p4n+3)-4 => p4n.(p4n+3)-4 chia 5 dư 4.
=> p chia 5 dư 4 => p4n.(p4n+3)-4 chia hết cho 5.
=> p8n +3.p4n -4 chia hết cho 5.
=>ĐPCM.
Lời giải:
Phân tích:
\(p^{8n}+3p^{4n}-4=p^{8n}-p^{4n}+4p^{4n}-4\)
\(=p^{4n}(p^{4n}-1)+4(p^{4n}-1)\)
\(=(p^{4n}+4)(p^{4n}-1)\)
\(=(p^{4n}+4)(p^{2n}-1)(p^{2n}+1)\)
Ta biết tính chất quen thuộc rằng một số chính phương chia $5$ được dư có thể là $0,1,4$
Vì $p$ là số nguyên tố lớn hơn $5$ nên $p^n$ không chia hết cho $5$. Do đó \((p^n)^2=p^{2n}\) chia $5$ dư $1$ hoặc $4$
Nếu $p^{2n}$ chia $5$ dư $1$ thì \(p^{2n}-1\vdots 5\Rightarrow p^{8n}+3p^{4n}-4\vdots 5\)
Nếu $p^{2n}$ chia $5$ dư $4$ thì \(p^{2n}+1\vdots 5\Rightarrow p^{8n}+3p^{4n}-4\vdots 5\)
Vậy \(p^{8n}+3p^{4n}-4\) luôn chia hết cho $5$ với mọi $p>5$
ta có
p^4-q^4=(p^4-1)+(q^4-1)
xét hiệu:p^4-1=(p^2)^2-1^4
=(p^2-1)(p^2+1)=(p+1)(p-1)(p^2+1) (*)
Ta thấy p+1 và p-1 là hai số chãn liên tiếp=>(p+1)(p-1)chia hết cho 8.Đặt (p+1)(p-1)=8n
Mặt khác p^2+1 là số chẵn.Dặt p^2+1=2k
thay vào (*) ta có p^4-1=2k8n=16knchia hết cho 16 (1)
mặt khác vì p là số nguyên tố lớn hơn 5=>p^4 chia cho 3 dư 1=>p^4-1 chia hết cho 3 (2)
mặt khascvif p là số nguyên tố lớn hơn 5 nên khi p chia cho 5 sẽ nhận được các số dư là 1,2,3,4
Với p=5m+1=>p-1 chia hết cho 5
Với p=5m+2=>p^4 chia cho 5 dư 1=>p^4-1 chia hết cho 5
Với p=5m+3=>p^4 chia cho 5 dư 1=>p^4-1 chia hết cho 5
Với p=5m+4=>p^4chia cho 5 dư 1=>p^4-1 chia hết cho 5
Tóm lại qua mỗi trường hợp thì p^4-1 đều chia hết cho 5 (3)
Từ (1),(2)và(3)=>p^4-1 chia hết cho 16.3.5=240
chứng minh tương tự với q^4-1=>q^4-1 chia hết cho 240
=>p^4-q^4 chia hết cho 240
Mình chẳng gì ngoài T/H2:p^4-q^4=(p^4+1)-(q^4+1)
Còn cách chứng minh như trên
Mình chưa chắc đâu,lỡ sai đừng trách mình!
Buồn!hu...hu..!
Bạn xem bài này nhé!
http://olm.vn/hoi-dap/question/60049.html
Rút được ra là:
p4-1 chia hết cho 240 với mọi số nguyên tố p>5
Ta có : p8n+3p4n- 4 = (p4n)2+3p4n- 4
Vì p là số nguyên tố lớn hơn 5 nên p có tận cùng là chữ số 1;3;7 hoặc 9
+) Với p = (...1), ta có: p4n=(...1)4n=(...1)
=> (p4n)2=(...1)2=(...1); 3p4n= 3.(...1)=(...3)
=>(p4n)2+3p4n- 4=(...1)+(...3)-4=(...0) chia hết cho 5
+) Với p = (...3), ta có: p4n=(...3)4n=(...1)
=> (p4n)2=(...1)2=(...1); 3p4n= 3.(...1)=(...3)
=>(p4n)2+3p4n- 4=(...1)+(...3)-4=(...0) chia hết cho 5
+) Với p = (...7), ta có: p4n=(...7)4n=(...1)
=> (p4n)2=(...1)2=(...1); 3p4n= 3.(...1)=(...3)
=>(p4n)2+3p4n- 4=(...1)+(...3)-4=(...0) chia hết cho 5
+) Với p = (...9), ta có: p4n=[(...9)2n]2=(...1)2=(...1)
=> (p4n)2=(...1)2=(...1); 3p4n= 3.(...1)=(...3)
=>(p4n)2+3p4n- 4=(...1)+(...3)-4=(...0) chia hết cho 5
Vậy p8n+3p4n- 4 chia hết cho 5 khi p là số nguyên tố lớn hơn 5