K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 6 2022

Ta có : p8n+3p4n- 4 = (p4n)2+3p4n- 4

Vì p là số nguyên tố lớn hơn 5 nên p có tận cùng là chữ số 1;3;7 hoặc 9

+) Với p = (...1), ta có: p4n=(...1)4n=(...1)

=> (p4n)2=(...1)2=(...1); 3p4n= 3.(...1)=(...3)

=>(p4n)2+3p4n- 4=(...1)+(...3)-4=(...0) chia hết cho 5

+) Với p = (...3), ta có: p4n=(...3)4n=(...1)

=> (p4n)2=(...1)2=(...1); 3p4n= 3.(...1)=(...3)

=>(p4n)2+3p4n- 4=(...1)+(...3)-4=(...0) chia hết cho 5

+) Với p = (...7), ta có: p4n=(...7)4n=(...1)

=> (p4n)2=(...1)2=(...1); 3p4n= 3.(...1)=(...3)

=>(p4n)2+3p4n- 4=(...1)+(...3)-4=(...0) chia hết cho 5

+) Với p = (...9), ta có: p4n=[(...9)2n]2=(...1)2=(...1)

=> (p4n)2=(...1)2=(...1); 3p4n= 3.(...1)=(...3)

=>(p4n)2+3p4n- 4=(...1)+(...3)-4=(...0) chia hết cho 5

Vậy p8n+3p4n- 4 chia hết cho 5 khi p là số nguyên tố lớn hơn 5

27 tháng 5 2015

Ta thấy các số nguyên tố lớn hơn 5 nâng lên lũy thừa có số mũ chia hết cho 4 thì có tận cùng là 1.

VD:74=2401;118=214358881,...

=>Ta có:

p8n +3.p4n -4

=(...1)+3.(...1)-4

=(...1)+(...3)-4

=(...4)-4

=(...0) chia hết cho 5 

Vậy p là số nguyên tố lớn hơn 5 thì p8n +3.p4n -4 chia hết cho 5

1 tháng 1 2020

trần thùy dung thông minh wá

p8n +3.p4n -4

=p4n.2+3.p4n-4

=(p4n)2+3.p4n-4

=p4n.p4n+3.p4n-4

=p4n.(p4n+3)-4

Vì p là số nguyên tố, p>5, nên:

p ko chia hết cho 5. p chia cho 5 dư 1,2,3,4.

Mà p4n.(p4n+3)-4 => p4n.(p4n+3)-4 chia 5 dư 4.

=> p chia 5 dư 4 => p4n.(p4n+3)-4 chia hết cho 5.

=> p8n +3.p4n -4 chia hết cho 5.

=>ĐPCM.

27 tháng 5 2015

Ta thấy các số nguyên tố lớn hơn 5 nâng lên lũy thừa có số mũ chia hết cho 4 thì có tận cùng là 1.

VD:74=2401;118=214358881,...

=>Ta có:

p8n +3.p4n -4

=(...1)+3.(...1)-4

=(...1)+(...3)-4

=(...4)-4

=(...0) chia hết cho 5 

Vậy p là số nguyên tố lớn hơn 5 thì p8n +3.p4n -4 chia hết cho 5

Đặt n = 2k , ta có                      ( đk k >= 1 do n là một số chẵn lớn hơn 4)

\(\left(2k\right)^4-4\times\left(2k\right)^3-4\times\left(2k\right)^2+16\times2k\)

\(=16k^4-32k^3-16k^2+32k\)

\(=16k^2\left(k^2-1\right)-32k\left(k^2-1\right)\)

\(=16k\times k\left(k-1\right)\left(k+1\right)-32\times k\left(k-1\right)\left(k+1\right)\)

Nhận xét \(\left(k-1\right)k\left(k+1\right)\)  là 3 số tự nhiên liên tiếp nên 

\(\left(k-1\right)k\left(k+1\right)\) chia hết cho 3

Suy ra điều cần chứng minh

23 tháng 11 2016

câu 1:

a, giả sử 2 số chẵn liên tiếp là 2k và (2k+2) ta có:

2k(2k+2) = 4k2+4k = 4k(k+1) chia hết cho 8 vì 4k chia hết cho 4, k(k+1) chia hết cho 2

b, giả sử 3 số nguyên liên tiếp là a,a+1,a+2 với mọi a thuộc Z

  • a,a+1,a+2 là 3 số nguyên liên tiếp nên tồn tại duy nhất một số chẵn hoặc có 2 số chẵn nên tích của chúng sẽ chia hết cho 2.

mặt khác vì là 3 số tự nhiên liên tiếp nên sẽ chia hết cho 3.

vậy tích của 3 số nguyên liên tiếp chia hết cho 6.

c, giả sử 5 số nguyên liên tiếp là a,a+1,a+2, a+3,a+4 với mọi a thuộc Z

  • vì là 5 số nguyên liên tiếp nên sẽ tồn tại 2 số chẵn liên tiếp nên theo ý a tích của chúng choa hết cho 8.
  • tích của 3 số nguyên liên tiếp chia hết cho 3.
  • tích của 5 số nguyên liên tiếp chia hết cho 5.

vậy tích của 5 số nguyên liên tiếp chia hết cho 120.

câu 2:

a, a3 + 11a = a[(a- 1)+12] = (a - 1)a(a+1) + 12a

  • (a - 1)a(a+1) chia hết cho 6 ( theo ý b câu 1)
  • 12a chia hết cho 6.

vậy a3 + 11a chia hết cho 6.

b, ta có a- a = a(a2 - 1) = (a-1)a(a+1) chia hết cho 3 (1) 

mn(m2-n2) = m3n - mn3 = m3n - mn + mn - mn3 = n( m- m) - m(n3 -n)

theo (1) mn(m2-n2) chia hết cho 3.

c, ta có: a(a+1)(2a+10 = a(a+1)(a -1+ a +2) = [a(a+1)(a - 1) + a(a+1)(a+2)] chia hết cho 6.( théo ý b bài 1)

p8n +3.p4n -4

=p4n.2+3.p4n-4

=(p4n)2+3.p4n-4

=p4n.p4n+3.p4n-4

=p4n.(p4n+3)-4

Vì p là số nguyên tố, p>5, nên:

p ko chia hết cho 5. p chia cho 5 dư 1,2,3,4.

Mà p4n.(p4n+3)-4 => p4n.(p4n+3)-4 chia 5 dư 4.

=> p chia 5 dư 4 => p4n.(p4n+3)-4 chia hết cho 5.

=> p8n +3.p4n -4 chia hết cho 5.

=>ĐPCM.

AH
Akai Haruma
Giáo viên
8 tháng 8 2018

Lời giải:

Phân tích:

\(p^{8n}+3p^{4n}-4=p^{8n}-p^{4n}+4p^{4n}-4\)

\(=p^{4n}(p^{4n}-1)+4(p^{4n}-1)\)

\(=(p^{4n}+4)(p^{4n}-1)\)

\(=(p^{4n}+4)(p^{2n}-1)(p^{2n}+1)\)

Ta biết tính chất quen thuộc rằng một số chính phương chia $5$ được dư có thể là $0,1,4$

Vì $p$ là số nguyên tố lớn hơn $5$ nên $p^n$ không chia hết cho $5$. Do đó \((p^n)^2=p^{2n}\) chia $5$ dư $1$ hoặc $4$

Nếu $p^{2n}$ chia $5$ dư $1$ thì \(p^{2n}-1\vdots 5\Rightarrow p^{8n}+3p^{4n}-4\vdots 5\)

Nếu $p^{2n}$ chia $5$ dư $4$ thì \(p^{2n}+1\vdots 5\Rightarrow p^{8n}+3p^{4n}-4\vdots 5\)

Vậy \(p^{8n}+3p^{4n}-4\) luôn chia hết cho $5$ với mọi $p>5$

3 tháng 4 2015

ta có

p^4-q^4=(p^4-1)+(q^4-1)

xét hiệu:p^4-1=(p^2)^2-1^4

                    =(p^2-1)(p^2+1)=(p+1)(p-1)(p^2+1)              (*)

Ta thấy p+1 và p-1 là hai số chãn liên tiếp=>(p+1)(p-1)chia hết cho 8.Đặt (p+1)(p-1)=8n

Mặt khác p^2+1 là số chẵn.Dặt p^2+1=2k

thay vào (*) ta có p^4-1=2k8n=16knchia hết cho 16            (1)

mặt khác vì p là số nguyên tố lớn hơn 5=>p^4 chia cho 3 dư 1=>p^4-1 chia hết cho 3          (2)

mặt khascvif p là số nguyên tố lớn hơn 5 nên khi p chia cho 5 sẽ nhận được các số dư là 1,2,3,4

Với p=5m+1=>p-1 chia hết cho 5

Với p=5m+2=>p^4 chia cho 5 dư 1=>p^4-1 chia hết cho 5

Với p=5m+3=>p^4 chia cho 5 dư 1=>p^4-1 chia hết cho 5

Với p=5m+4=>p^4chia cho 5 dư 1=>p^4-1 chia hết cho 5

Tóm lại qua mỗi trường hợp thì p^4-1 đều chia hết cho 5              (3)

Từ (1),(2)và(3)=>p^4-1 chia hết cho 16.3.5=240

chứng minh tương tự với q^4-1=>q^4-1 chia hết cho 240

=>p^4-q^4 chia hết cho 240

7 tháng 1 2016

Mình chẳng gì ngoài T/H2:p^4-q^4=(p^4+1)-(q^4+1)

Còn cách chứng minh như trên

Mình chưa chắc đâu,lỡ sai đừng trách mình!

                                                                                                                               Buồn!hu...hu..!

14 tháng 6 2016

Bạn xem bài này nhé!

http://olm.vn/hoi-dap/question/60049.html

Rút được ra là:

p4-1 chia hết cho 240 với mọi số nguyên tố p>5