Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5x + 2 chia hết cho 9 - 2x
=> 2(5x + 2) = 10x + 4 chia hết cho 9 - 2x
=> 10x + 4 + 5(9 - 2x) = 10x + 4 + 45 - 10x = 49 chia hết cho 9 - 2x
=> 9 - 2x thuộc Ư(49) = {1, 7, 49}
=> 2x thuộc {8, 2, -40}
=> x thuộc {1, 4, -20}
Vậy x thuộc {1, 4, -20}
Học tốt nhé!
1
gọi số cần tìm là p.dễ thấy p lẻ
=>p=a+2 và p=b-2
=>a=p-2 và b=p+2
vì p-2,p,p+2 là 3 số lẻ liên tiếp nên có một số chia hết cho 3
với p-2=3=>p=5=7-2(chọn)
p=3=>p=1+2(loại)
p+2=3=>p=1(loại)
vậy p=5
2
vì p1, p2, p3 là 3 số nguyên tố (SNT) > 3
theo giả thiết:
p3 = p2 + d = p1 + 2d (*)
=> d = p3 - p2 là số chẵn ( vì p3, p2 lẻ)
đặt d = 2m, xét các trường hợp:
* m = 3k => d chia hết cho 6
* m = 3k + 1: khi đó 3 số là:
p2 = p1 + d = p1 + 2m = p1 + 6k + 2
p3 = p1 + 2d = p1 + 4m = p1 + 12k + 4
do p1 là SNT > 3 nên p1 chia 3 dư 1 hoặc 2
nếu p1 chia 3 dư 1 => p2 = p1 + 6k + 2 chia hết cho 3 => p2 là hợp số (không thỏa gt)
nếu p1 chia 3 dư 2 => p3 = p1 + 12k + 4 chia hết cho 3 => p3 là hợp số (---nt--)
=> p1, p2 , p3 là SNT khi m ≠ 3k + 1
* m = 3k + 2, khi đó 3 số là:
p2 = p1 + d = p1 + 2m = p1 + 6k + 4
p3 = p1 + 2d = p1 + 4m = p1 + 12k + 8
nếu p1 chia 3 dư 1 => p3 = p1 + 12k + 8 chia hết cho 3 => p3 là hợp số (không thỏa gt)
nếu p 1 chia 3 dư 2 => p2 = p1 + 6k + 4 chia hết cho 3 => p2 là hợp số ( không thỏa gt)
=> p1, p2 , p3 là SNT khi m ≠ 3k + 2
vậy để p1, p 2, p 3 đồng thời là 3 SNT thì m = 3k => d = 2m = 6k chia hết cho 6.
3
ta có p,p+1,p+2 là 3 số liên tiếp nên 1 trong 3 số chia hết cho 3.
mà p,p+2 là SNT >3 nên p,p+2 ko chia hết cho 3 và là số lẻ
=>p+1 chia hết cho 3 và p+1 chẵn=>p+1 chia hết cho 6
4
vì p là SNT >3=>p=3k+1 hoặc p=3k+2
với p=3k+1=>p+8=3k+9 chia hết cho 3
với p=3k+2=>p+4=3k+6 ko phải là SNT
vậy p+8 là hợp số
5
vì 8p-1 là SNt nên p>3=>8p ko chia hết cho 3
vì 8p,8p+1,8p-1 là 3 số liên tiếp nên 1 trong 3 số chia hết cho 3.mà 8p,8p-1 là SNT >3=>8p+1 chia hết cho 3 và 8p+1>3
=>8p+1 là hợp số
6.
Ta có: Xét:
+n=0=>n+1=1;n+3=3;n+7=7;n+9=9;n+13=13;n+15=15n+1=1;n+3=3;n+7=7;n+9=9;n+13=13;n+15=15(hợp số,loại)
+n=1
=>n+1=2;n+3=4;n+7=8;n+9=10;n+13=14;n+15=16n+1=2;n+3=4;n+7=8;n+9=10;n+13=14;n+15=16(hợp số,loại)
+n=2
=>n+1=3;n+3=5;n+7=9;n+9=11;n+13=15;n+15=17n+1=3;n+3=5;n+7=9;n+9=11;n+13=15;n+15=17(hợp số,loại)
+n=3
=>n+1=4;n+3=6;n+7=10;n+9=12;n+13=16;n+15=18n+1=4;n+3=6;n+7=10;n+9=12;n+13=16;n+15=18(hợp số,loại)
+n=4
n+1=5;n+3=7;n+7=11;n+9=13;n+13=17;n+15=19n+1=5;n+3=7;n+7=11;n+9=13;n+13=17;n+15=19(SNT,chọn)
Nếu n>4 sẽ có dạng 4k+1;4k+2;4k+3
+n=4k+1
⇔n+3=4k+1+3=4k+4⇔n+3=4k+1+3=4k+4(hợp số,loại)
+n=4k+2
=>n+13=4k+2+13=4k+15n+13=4k+2+13=4k+15(hợp số,loại)
+n=4k+3
=>n+3=4k+3+3=4k+6n+3=4k+3+3=4k+6(hợp số,loại)
⇔n=4
4.vì p là số nguyên tố >3
nên p có dạng 3k+1;3k+2
xét p=3k+1 ta có :p+4=(3k+1)+4=3k+5(thỏa mãn)
xét p=3k+2 ta có: p+4=(3k+2)+4=3k+6 chia hết cho 3(trái với đề bài)
vậy p+8=(3k+1)+8=3k+9 chia hết cho 3
Vậy p+8 là hợp số
\(p^2+2019p+101=2019p+102+p^2-1\)
Ta có \(p\)là số nguyên tố lớn hơn \(3\)nên \(p^2\)chia cho \(3\)dư \(1\).
Khi đó \(p^2-1\)chia hết cho \(3\).
Suy ra \(p^2+2019p+101=2019p+102+p^2-1\)chia hết cho \(3\).
mà \(p^2+2019p+101>3\)nên nó là hợp số.
Số nguyên tố lớn hơn 3 sẽ có dạng 3k + 1 hay 3k + 2 ( k \(\in\)N )
Nếu p = 3k + 1 thì p + 2 = 3k + 1 + 2 = 3k + 3 = 3( k + 1 ) là số nguyên tố
Vì 3( k + 1 ) chia hết cho 3 nên dạng p = 3k + 1 không thể có
Vậy p có dạng 3k + 2 ( Vậy, p + 2 = 3k + 2 + 2 = 3k + 4 là 1 số nguyên tố )
=> p + 1 = 3k + 2 + 1 = 3k + 3 = 3( k+1 ) chia hết cho 3
Mặt khác p là 1 số nguyên tố lớn hơn 3 cũng như lớn hơn 2 nên p là 1 số nguyên tố lẻ
=> p + 1 là 1 số chẵn
=> p + 1 chia hết cho 2
Vì p chia hết cho cả 2 và 3 mà ƯCLN( 2; 3 ) = 1
=> p + 1 chia hết cho 6
Tổng trên có 10 số hạng nhóm 2 số vào một nhóm ta được:
A = (2+22)+(23+24)+...+(29+210)
A = 2(1+2) + 23(1+2)+...+29(1+2)
A = 2.3+23.3+...+29.3
A = 3(2+23+...+29) chia hết cho 3
Vậy tổng A chia hét cho 3
Tổng trên có 10 số hạng nhóm 2 số vào một nhóm ta được:
A = (2+22)+(23+24)+...+(29+210)
A = 2(1+2) + 23(1+2)+...+29(1+2)
A = 2.3+23.3+...+29.3
A = 3(2+23+...+29) chia hết cho 3
Vậy tổng A chia hét cho 3
\(K=2+2^2+2^3+...+2^{20}\)
\(2K=2^2+2^3+2^4+...+2^{21}\)
\(\Rightarrow K=2K-K=2^{21}-2=2097150⋮93\)
=> K chia hết cho 93
Ta có: 93=31*3
Bạn cm K chia hết cho 31 và 3
Vào Câu hỏi của friend forever II Lê Tiến Đạt
Ta có: \(100^{2013}=100.100....100=\overline{100...}\)(Chữ số đầu là 1, còn lại là 0)
\(\Rightarrow100^{2013}+2=\overline{100...2}\).
Ta thấy \(\overline{100...2}\)có tổng các số hạng là 3. Mà \(3⋮3\)(Hiển nhiên)
\(\Rightarrow\overline{100...2}⋮3\Rightarrow100^{2013}+2⋮3\)(đpcm).
tk ạ!
Ta có:
p20 - 1=(p4 - 1)(p16 + p12 + p8 + p4 + 1)
Do p là số nguyên tố lớn hơn 5⇒ p là 1 số lẻ
p2 + 1 và p2 - 1 là các số chẵn
p4 - 1 ⋮ 4
p20 - 1 ⇒4
vì p là số nguyên tố lớn hơn 5⇒ p là số không chia hết cho 5
p4 - 1 ⋮ 5
lập luận được p16 + p12 + P8 + p4 + 1 ⋮ 5
⇒ p20 - 1 chia hết cho 25
Mà (4;25) = 1
Nên 𝑝20p
20- 1 chia hết cho 100
❤