Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
+)Xét trường hợp p=2 =>p+6= 8 là hợp số (trái với giả thiết)
+) Xét trường hợp p=3 =>p+12=15 là hợp số (trái với giả thiết)
+)Xét trường hợp p>3 =>p có một trong hai dạng :3k+1 ; 3k+2
Nếu p= 3k+1 =>p+8=3k+8+1=3k+9 chia hết cho 3
=>p+8 là hợp số (trái với giả thiết )
Vậy p phải có dạng là 3k+2
Nếu p=3k+2 =>p+4 = 3k+2+4 = 3k+6 =3.(k+2)=>p+4 chia hết cho 3
=>p+4 là hợp số (đpcm)
Số nguyên tố > 3 luôn tồn tại dưới dạng 3k + 1 hoặc 3k + 2
Nếu p = 3k + 1
=> p + 2 = 3k + 1 + 2 = 3k + 3 = 3 ( k + 1 ) <=> chia hết cho 3
Vậy p không tồn tại ở dạng 3k + 1
=> p = 3k + 2
=> p + 1 = 3k + 2 + 1 = 3k + 3 = 3 ( k + 1 ) <=> chia hết cho 3
Mà các số nguyên tố lớn hơn 3 đều là số lẻ
=> p + 1 là số chẵn <=> chia hết cho 2
p + 1 vừa chia hết cho 2 , vừa chia hết cho 3
=> p + 1 chia hết cho 6
Mọi người cứ làm từng câu một, vậy tui làm cả 2 câu nhé!
Câu 1:
p là số nguyên tố lớn hơn 3 => p=3k+1 hoặc p=3k+2
Nếu p=3k+2
=>p+4=3k+2+4=3k+6 (loại vì p+4 cũng là số nguyên tố)
=>p=3k+1
=>p+8=3k+1+8=3k+9 là hợp số (đpcm)
Câu 2:
Ta có: abcabc=abc.1001=abc.7.11.13
Vì 7;11;13 là 3 số nguyên tố nên abcabc chia hết cho ít nhất 3 số nguyên tố (đpcm)
Giả sử p là 1 số nguyên tố >3, do p không chia hết cho 3 nên p có dạng 3k + 1 hoặc 3k + 2 nhưng do p +4 là số nguyên tố nên p không thể có dạng 3k + 2 vậy p có dạng 3k +1. Vậy p + 8 = 3k + 9 chia hết cho 3 nên nó là hợp số.
vì a là số nguyên tố nên suy ra a là số lẻ (a>3)
khi 1 số lẻ trừ đi 1 số lẻ thì ra 1 số chẵn
khi 1 số lẻ cộng 1 số lẻ thì ra một số lẻ
TH1 nếu a là 5 thì (5-1)(5+4)=36:6(đúng)
vậy (a-1)(a+4) chia hết cho 6
Ta thấy : (p-1).p.(p+1)là tích 3 số tự nhiên liện tiêp nên (p-1).p.(p+1) \(⋮\) 3
, mà p là số nguyên tố > 3 nên p không chia hết cho 3 => (p-1)(p+1)\(⋮\)3 (1)
Vì chỉ có 1 số nguyên tố chẵn là 2 ,
còn lại toàn là số nguyên tố lẻ mà p>3 nên P là số nguyên tố lẻ
=> (p-1)(p+1) là tích 2 số chẵn liên tiếp nên (p-1)(p+1) \(⋮\) 8 (2)
Từ (1)và (2) => (P-1)(P+1) chia hết cho cả 3 và 8 mà (3;8)=1 nên (p-1)(p+1)\(⋮\) 24 ( đpcm)
a, Vì p là số nguyên tố > 3 => p lẻ
=> Hai số \(p-1;p+1\)là hai số chẵn liên tiếp
=> \(\left(p-1\right).\left(p+1\right)⋮8\)( 1 )
b, Vì p là số nguyên số > 3 => p = 3k + 1 hoặc p = 3k + 2 ( k \(\in\)N* )
+, Với p = 3k + 1
=> \(\left(p-1\right).\left(p+1\right)=3k.\left(3k+2\right)⋮3\left(2a\right)\)
+, Với p = 3k + 2
\(\Rightarrow\left(p-1\right).\left(p+1\right)=\left(3k-1\right).3.\left(k+1\right)⋮3\left(2b\right)\)
Từ \(\left(2a\right),\left(2b\right)\Rightarrow\left(p-1\right).\left(p+1\right)⋮3\)( 2 )
Từ ( 1 ) và ( 2 ) => \(\left(p-1\right).\left(p+1\right)⋮\left(3.8\right)\Rightarrow\left(p-1\right).\left(p+1\right)⋮24\)