K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Giúp mình với . ( giải chi tiết và cái hình luôn) Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H làgiao điểm của BM và CN.a) Tính số đo các góc BMC và BNC.b) Chứng minh AH vuông góc BC.c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho gócMAB = 60độ . Kẻ dây MN vuông góc với AB...
Đọc tiếp

Giúp mình với . ( giải chi tiết và cái hình luôn)
Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H là
giao điểm của BM và CN.
a) Tính số đo các góc BMC và BNC.
b) Chứng minh AH vuông góc BC.
c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH
Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho góc
MAB = 60độ . Kẻ dây MN vuông góc với AB tại H.
a) Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM).
b) Chứng minh MN2 = 4AH.HB .
c) Chứng minh tam giác BMN là tam giác đều và điểm O là trọng tâm của nó.
d) Tia MO cắt đường tròn (O) tại E, tia MB cắt (B) tại F. Chứng minh ba điểm N, E, F thẳng hàng.
Bài 3, Cho đường tròn (O; R) và điểm A cách O một khoảng bằng 2R, kẻ tiếp tuyến AB tới đường
tròn (B là tiếp điểm).
a) Tính số đo các góc của tam giác OAB
b) Gọi C là điểm đối xứng với B qua OA. Chứng minh điểm C nằm trên đường tròn O và AC
là tiếp tuyến của đường tròn (O).
c) AO cắt đường tròn (O) tại G. Chứng minh G là trọng tâm tam giác ABC.
Bài 4, Từ điểm A ở ngoài đường tròn (O; R) kẻ hai tiếp tuyến AB, AC (với B và C là hai tiếp điểm). Gọi H là giao điểm của OA và BC.
a) Chứng minh OA vuông góc BC và tính tích OH.OA theo R
b) Kẻ đường kính BD của đường tròn (O). Chứng minh CD // OA.
c) Gọi E là hình chiếu của C trên BD, K là giao điểm của AD và CE. Chứng minh K là trung điểm CE.

3
9 tháng 10 2017

Hình học lớp 9

21 tháng 4 2017

Tự giải đi em

9 tháng 7 2020

sdadssad

bạn sáng ko đc trả lời spam

21 tháng 4 2020

M H Q O I K P

a.Ta có :MP,MQ là tiếp tuyến của (O)

\(\Rightarrow MP\perp OP,MQ\perp OQ\)

Mà \(OH\perp MH\Rightarrow M,H,O,P\) cùng thuộc đường tròn đường kính MO 

b.Ta có : M,H,Q,O,P cùng thuộc một đường tròn

\(\Rightarrow\widehat{IHQ}=\widehat{IPQ}\)

Mà \(\widehat{HIQ}=\widehat{PIO}\Rightarrow\Delta IPO~\Delta IHQ\left(g.g\right)\)

\(\Rightarrow\frac{IO}{IQ}=\frac{IP}{IH}\Rightarrow IH.IO=IQ.IP\)

c.Ta có :

\(MP,MQ\) là tiếp tuyến của (O)

\(\Rightarrow PQ\perp MO\Rightarrow\widehat{OKI}=\widehat{OHM}\left(=90^0\right)\)

\(\Rightarrow\Delta OKI~\Delta OHM\left(g.g\right)\)

\(\Rightarrow\frac{OK}{OH}=\frac{OI}{OM}\Rightarrow OM.OK=OI.OH\)

Mà \(PK\perp OM,OP\perp MP\Rightarrow OK.OM=OP^2=R^2\)

\(\Rightarrow OI.OH=R^2\Rightarrow OI=\frac{R^2}{OH}\)

Vì \(OH\perp d\) cố định  \(\Rightarrow H\)cố định \(\Rightarrow I\) cố định 

\(\Rightarrow IP.IQ=IO.IH\) không đổi 

d ) Ta có : 

\(\widehat{PMQ}=60^0\Rightarrow\widehat{KOQ}=\widehat{KOP}=60^0\)

 Mà \(OK=\frac{1}{2}OQ=\frac{1}{2}R\)
Lại có : \(\widehat{MOQ}=60^0,OQ\perp MQ\Rightarrow\Delta MQO\)là nửa tam giác đều
\(\Rightarrow MO=2OQ=2R\Rightarrow MK=OM-OK=\frac{3}{2}R\)
\(\Rightarrow\frac{S_{MPQ}}{S_{OPQ}}=\frac{\frac{1}{2}MK.PQ}{\frac{1}{2}OK.PQ}=\frac{MK}{OK}=\frac{3}{4}\)