K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 11 2015

a) Ta có OA=OB=OC =R => ABC vuông tại C ( có Trung tuyến OC =AB/2)

Kẻ OH ; OK lần lượt vuông góc với AC;BC => H là trung điểm của AC; K là TD của BC

=> OHCB là HCN =>AC=2HC =2OK =2.6=12

                              BC =2CK =2.OH =2.8=16

b)D đối xứng với A qua C mà BC vuông góc AC => BC là trung trực của AD => BA =BD

=> ABD cân tại B

c) Do AB cố định mà BD =AB =2R

=> D nằm trên đường tròn tâm B  Bán kính BD =AB =2R

10 tháng 8 2021

TD là gì 😥?

23 tháng 11 2019

A B C O I G J S K H L A' M N

a) Đặt J là trung điểm cạnh BC. Theo quan hệ vuông góc giữa đường kính và dây ta có ^OIC = ^OJC = 900

Vậy I thuộc đường tròn đường kính OC cố định (đpcm).

b) Kẻ đường kính BK của (O). d cắt CK tại điểm S. Ta có AK vuông góc AB, IS vuông góc AB

Suy ra IS // AK. Vì I là trung điểm cạnh AC của tam giác AKC nên S là trung điểm CK cố định (đpcm).

c) OJ cắt (O) tại hai điểm phân biệt là A' và L (A' thuộc cung lớn BC). Hạ AH vuông góc BC

Ta thấy \(AH+JL\le AL\le2R=A'L\Rightarrow AH\le A'L-JL=A'J\)

Suy ra \(S=\frac{AH.BC}{2}\le\frac{A'J.BC}{2}\)(không đổi). Vậy S lớn nhất khi A trùng A'.

d) Trên đoạn JB,JC lấy M,N sao cho JM = JN = 1/6.BC. Khi đó M,N cố định.

Đồng thời \(\frac{JG}{JA}=\frac{JM}{JB}=\frac{JN}{JC}=\frac{1}{3}\). Suy ra ^MGN = ^BAC = 1/2.Sđ(BC (Vì GM // AB; GN // AC)

Vậy G là các điểm nhìn đoạn MN dưới một góc không đổi bằng 1/2.Sđ(BC, tức là một đường tròn cố định (đpcm).

23 tháng 11 2019

Chào chú Minh.

7 tháng 6 2016

help me 

23 tháng 9 2020

a/

Ta có sđ ^NOB = sđ cung NB (góc ở tâm)

sđ cung NB = 1/2 sđ cung BC

=> sđ ^NOB = 1/2 sđ cung BC (1)

Ta có  sđ ^BAD = 1/2 sđ cung BC (góc nội tiếp đường tròn) (2)

Từ (1) và (2) => ^BAD = ^NOB => ON//AD (3) (hai đt bị cắt bởi 1 cát tuyến có 2 góc so le trong bằng nhau thì chúng // với nhau)

Mà ND vuông góc AD (đề bài) (4)

Từ (3) và (4) => ND vuông góc ON 

=> ND là tiếp tuyến của (O) tại N (đường thẳng đi qua 1 điểm trên đường tròn mà vuông góc với bán kính tại điểm đi qua thì dt đó là tt)

b/

Ta có sđ cung NC = 1/2 sđ cung BC

sđ cung CM = 1/2 sđ cung AC

=> sđ cung NC + sđ cung CM = sđ cung MN = 1/2 (sđ cung BC +  sđ cung AC) = (1/2).180 = 90

c/

Xét tg OMN có OM và ON không đổi = BK đường tròn => tg OMN cân tại O

sđ cung MN không đổi = 90 => MN không đổi

Từ O hạ đường thẳng vuông góc với MN tại K => OK là đường cao đồng thời là đường trung trực của tg OMN => K là trung điểm của MN và OK không đổi => Khi C thay đổi K luôn chạy trên đường tròn tâm O bán kính OK

Mà MN vuông góc với OK tại K => MN là tiếp tuyến của đường tròn tâm O bán kính OK 

O cố định nên đường tròn tâm O bán kính OK cố định

=> MN luôn tiếp xúc với đường tròn tâm O bán kính OK cố định

23 tháng 9 2020

Nguyễn Ngọc Anh Minh

câu c bạn phải tính ra OK rùi mới nói nó không đổi nha

21 tháng 4 2019

F A B C O O 1 2 O D E K R M N I G H S J

a) Gọi AD cắt CE tại J. Khi đó tứ giác BEJD nội tiếp đường tròn (BJ).

Dễ thấy ^FDE = ^FDJ + ^EDJ = ^DAC + ^ECA = ^DEJ + ^JEF = ^FED => \(\Delta\)DEF cân tại F

Từ đó nếu gọi I là trung điểm của BJ thì ta có I là tâm nội tiếp của \(\Delta\)FO1O2

Do (O1) và (O) có hai điểm chung là A,B nên O1O là phân giác ^AO1D

Tương tự O2O là phân giác ^CO2E. Suy ra O là tâm bàng tiếp góc F của \(\Delta\)FO1O2

=> F,I,O thẳng hàng. Dễ có ^IEO1=^IBO1 = 900.

Gọi tiếp điểm giữa (O) và FO2 là G, hạ OH vuông góc AB. Khi đó ^FEI = ^FGO (=900)

=> \(\Delta\)FIE ~ \(\Delta\)FOG (g.g) => \(\frac{FI}{FO}=\frac{IE}{OG}=\frac{IJ}{OH}\)kéo theo \(\Delta\)EIJ ~ \(\Delta\)EOH (c.g.c)

=> E,J,H thẳng hàng. Từ đây, gọi S đối xứng với H qua (O) thì \(\Delta\)FJB ~ \(\Delta\)FHS (c.g.c)

=> F,B,S thẳng hàng. Hay FB đi qua S. Ta thấy AC cố định => OH=const => HS=const => S cố định.

Vậy FB luôn đi qua S cố định (đpcm).

b) Theo câu a, FJ đi qua H với H là trung điểm của AC. Theo bổ đề hình thang thì MN//AC

Suy ra ^MND = ^DAC = ^MED => Tứ giác MNED nội tiếp => ^MDN = ^MEN

=> ^MDN + 900 = ^MEN + 900 => ^BDM = ^BEN => 1800 - ^BDN = 1800 - ^BEN => ^MKB = ^NKB

Vì KB cắt đường tròn (MNK) tại R nên R là điểm chính giữa (MN => RM=RN

Ta lại có ^MEN = ^BEN - 900 = 900 - ^MKN/2 = ^MRN/2. Kết hợp với RM=RN

Dẫn đến điểm E thuộc đường tròn (R,RM). Tương tự có D cũng thuộc (R)

=> R là tâm ngoại tiếp tứ giác DMNE => RD = RE (đpcm).

21 tháng 4 2019

Sửa E thành F ở chỗ "\(\Delta\)EIJ ~ \(\Delta\)EOH" nhé ! Gõ nhầm :)