K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1. Cho (O,R) dây AB cố định. Từ C di động trên (O) dựng hình bình hành CABD. CMR  giao điểm hai đường chéo nằm trên 1 đường trong cố định2. Cho BC cố định, I là trung điểm BC, A di động trên mặt phẳng sao cho BA=BC, H là trung điểm của AC, AI cắt BH tại M. Hỏi M di động trên di động trên đường nào thì A di động3. Cho (O,R) BC là dây cố định. A là  1 điểm di động trên (O,R). Lấy M đối xứng...
Đọc tiếp

1. Cho (O,R) dây AB cố định. Từ C di động trên (O) dựng hình bình hành CABD. CMR  giao điểm hai đường chéo nằm trên 1 đường trong cố định

2. Cho BC cố định, I là trung điểm BC, A di động trên mặt phẳng sao cho BA=BC, H là trung điểm của AC, AI cắt BH tại M. Hỏi M di động trên di động trên đường nào thì A di động

3. Cho (O,R) BC là dây cố định. A là  1 điểm di động trên (O,R). Lấy M đối xứng với C qua trung điểm I của AB. Hỏi M di động trên đường nào khi A di động

4.  Cho A di chuyển trên (O,R) đường kính BC gọi M đối xứng với A qua B, H là hình chiếu của A trên BC, I là trung điểm HC

a. CMR M chuyển động trên (O,R) 1 đường thẳng tròn cố định 

b. CMR tam giác AHM  đồng dạng tam giác CIA

c. CMR MH vuông góc AI

d MH cắt (O) tại E và F đường thẳng AI cắt (O) tại G. CMR Tổng bình phương các cạnh  của tứ giác AEGF ko đổi

0
18 tháng 12 2016

Mình chỉ nói gợi ý thôi, bạn tự phát triển nhé:

Câu a)

  • CM: \(MO\)song song với \(NB\).
  • CM: tam giác \(MAO\) và \(NOB\) bằng nhau.
  • CM: \(OMNB\) là hình bình hành.

Câu b)

  • CM: \(MAON\)là hình chữ nhật.
  • CM: \(H\) là giao của \(MO\) và \(AN\)
  • Gọi \(D\) là hình chiếu của \(H\) lên \(AB\). CM: \(D\) là trung điểm \(AO\).
  • CM: \(H\) di động trên đường cố định.
16 tháng 3 2018

Hẳn lớp 9

19 tháng 9 2018

a/ Xét tg vuông AOH và tg vuông IOK có

\(OI\perp AH;KI\perp AO\Rightarrow\widehat{KIO}=\widehat{HAO}\)

\(\Rightarrow\Delta AOH\) đồng dạng với \(\Delta IOK\)(Hai tg vuông có hai góc nhọn tương ứng bằng nhau) (1)

b/

Từ (1) \(\Rightarrow\frac{OK}{OH}=\frac{OI}{OA}\Rightarrow OH.OI=OK.OA\)

Ta có \(OA\perp BC\)(Hai tiếp tuyến xuất phát từ 1 điểm ngoài đường tròn thì đường thẳng nối điểm đó với tâm vuông góc và chia đôi dây cung tạo bởi hai tiếp điểm)

Xét tg vuông ABO có \(OB^2=OK.OA=3\) không đổi

\(\Rightarrow OH.OI\)không đổi mà OH không đổi => OI không đổi

Mà H; O cố định => I cố định => Khi A chay trên xy thì BC luôn đi qua điểm I cố định

19 tháng 11 2018

bạn ơi ko có hingf ak

23 tháng 6 2017

Đường tròn

15 tháng 5 2016

bạn vẽ hình ra đi

15 tháng 5 2016

Hình đâu bạn?

7 tháng 3 2018

@Vũ Thị Huyền giúp em

15 tháng 7 2018

1) BH // OA và cùng vuông góc với xy 
Tam giác AOB cân tại O vì OA = OB = bán kính của (O) 
Góc HBA = góc BAO ( so le trong) 
góc BAO = ABO ( vì tam giác AOB cân tại O) 
Suy ra HBA = ABO hay BA là phân giác góc HBO 

2) Phân giác ngoài của HBO là đường thẳng vuông góc với phân giác trong BA ---------(1) 
Gọi A' là giao điểm thứ hai của OA với (O) 
vì AA' là đường kính nên BA' vuông góc với BA------(2) 
Từ (1) và (2) suy ra phân giác ngoài của HBO qua A" cố định 

3) MO vuông góc với AB ( vì tam giác AOB cân tại O) 
Trong tam giác MBO có BA là phân giác cũng là đường cao 
Suy ra BM = BO 
BO = BA 
suy ra BM = OA 
Suy ra AOBM là hình bình hành ( vì BM// = OA) 
Mà OB = OA nên AOBM là hình thoi 
Vậy AM = AO 
Hay M thuộc đường tròn tâm A bán kính OA