K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Trả lời:

a) (O′) có OA là đường kính và E(O′) nên OE⊥AC

Tương tự với (O) ta có BC⊥AC nên OE//BC mà OO là trung điểm của AB

⇒E là trung điểm của AC⇒ OE=12BC.

Tương tự OF=12DB mà cung BC bằng cung BD nên BC=BD⇒OE=OF hay cung OE= cung OF.

                                          ~Học tốt!~

26 tháng 7 2019

a, Ta chứng minh E là trung điểm của AC nên OE = 1 2 BC

Tương tự ta có OF =  1 2 DB

Mà BC < BD ta suy ra OE < OF

b, Chứng minh được  A E 2 = A O 2 - O E 2 và A F 2 = A O 2 - O F 2

Từ đó ta có A E 2 > A F 2 => AE > AF

=> sđ  A E ⏜ ; A F ⏜

14 tháng 2 2016

a)  vuông,  nên
     
Kc là tiếp tuyến, KEF là cát tuyến nên
     
Suy ra , nên

Ta có  nên , từ đó EMOF là tứ giác nội tiếp.          (1)
b) Đặt . Ta có ... )uôn nên là ến, KFàcáê u êT c\(DeltaKM\simDetaF.g êtđó O àt gánội ế 1)ặ aó ,nên là tứ iá ộ tip. (2ừ (1) ()y ramđi A , F tộc cng một đường đườgính ủ

26 tháng 5 2021

a) Xét tam giác DAC và tam giác DBE có:

\(\left\{{}\begin{matrix}\widehat{ADC}=\widehat{BDE}\left(\text{đối đỉnh}\right)\\\widehat{DAC}=\widehat{DBE}\left(=\dfrac{1}{2}sđ\stackrel\frown{CE}\right)\end{matrix}\right.\)

\(\Rightarrow\Delta DAC\sim\Delta DBE\left(g.g\right)\)

\(\Rightarrow\dfrac{DA}{DC}=\dfrac{DB}{DE}\Rightarrow DA.DE=DB.DC\).

b) Ta có \(\widehat{FCB}=\widehat{FEA}=90^o\) nên tứ giác FCDE nội tiếp đường tròn đường kính FD.

c) Dễ thấy I là trung điểm của FD.

Từ đó tam giác ICD cân tại I.

Dễ thấy D là trực tâm của tam giác FAB nên \(FD\perp AB\). Ta có: \(\widehat{ICD}=\widehat{IDC}=90^o-\widehat{AFD}=\widehat{BAC}=\dfrac{1}{2}sđ\stackrel\frown{BC}\) nên IC là tiếp tuyến của (O).

23 tháng 11 2017

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

18 tháng 2 2017

a) Nối C đến D.

Ta có 2 đường tròn bằng nhau => AC = AD

=> ∆ ACD cân tại A

Lại có góc ABC = 90°; do có OB = OC = OA = R ( tính chất trung tuyến ứng với cạnh huyền )

Tương tự có góc ABD = 90°

=> ABC + ABD = 180°

=> C; B; D thẳng hàng và AB ⊥ CD

=> BC = BD

=> cung BC = cung BD

b) Nối E đến D; từ B hạ BH ⊥ ED Ta có góc DEA = 90° ( chứng minh tương tự theo (a) )

=> BH // EC

Mà theo (a) ta có BE = BD

=> BH là đường trung bình tam giác CDE

=> HE = HD mà BH ⊥ ED => B là điểm chính giữa cung EBD

18 tháng 2 2017

a) Nối C đến D.

Ta có 2 đường tròn bằng nhau => AC = AD

=> ∆ ACD cân tại A

Lại có góc ABC = 90°; do có OB = OC = OA = R ( tính chất trung tuyến ứng với cạnh huyền )

Tương tự có góc ABD = 90°

=> ABC + ABD = 180°

=> C; B; D thẳng hàng và AB ⊥ CD

=> BC = BD

=> cung BC = cung BD

b) Nối E đến D; từ B hạ BH ⊥ ED Ta có góc DEA = 90° ( chứng minh tương tự theo (a) )

=> BH // EC

Mà theo (a) ta có BE = BD

=> BH là đường trung bình tam giác CDE

=> HE = HD mà BH ⊥ ED => B là điểm chính giữa cung EBD