Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: AB vuông góc AC
nên A nằm trên đường tròn đường kính BC
=>B,O,C thẳng hàng
c: BO=CO=BC/2=\(\dfrac{\sqrt{10^2+24^2}}{2}=\dfrac{26}{2}=13\left(cm\right)\)
a: Gọi OH,OK lần lượt là khoảng cách từ O đến AB,AC
ΔOAB cân tại O
mà OH là đường cao
nên H là trung điểm của AB
=>HA=HB=10/2=5cm
\(OH=\sqrt{13^2-5^2}=12\left(cm\right)\)
ΔOAC cân tại O
mà OK là đường cao
nên K là trung điểm của AC
=>AK=KC=24/2=12cm
\(OK=\sqrt{13^2-12^2}=5\left(cm\right)\)
a: ΔOBC cân tại O
mà OH là đường cao
nên H là trung điểm của BC
=>HB=HC=12cm
=>\(OH=\sqrt{15^2-12^2}=9\left(cm\right)\)
b: Xét (O) có
AB,AC là tiếp tuyến
nên AB=AC
=>A nằm trên trung trực của BC
mà OH là trung trực của BC
nên O,H,A thẳng hàng
c: OA=OB^2/OH=15^2/9=25cm
=>AB=AC=20cm
Câu 1:
Gọi giao điểm của OC với AB là H
Vì OC\(\perp\)AB nên OH\(\perp\)AB tại H
=>OH là khoảng cách từ O xuống dây AB
Ta có: ΔOAB cân tại O
mà OH là đường cao
nên H là trung điểm của AB
=>HA=HB=AB/2=8(cm)
ΔOHA vuông tại H
=>\(OH^2+HA^2=OA^2\)
=>\(OH^2=10^2-8^2=36\)
=>\(OH=\sqrt{36}=6\left(cm\right)\)
Câu 2:
a: Xét (O) có
AB là đường kính
BC là dây
Do đó: AB>BC
b: Xét (O) có
ΔCAB nội tiếp
AB là đường kính
Do đó: ΔCAB vuông tại C
c: Xét ΔACB có
O là trung điểm của AB
OM//CB
Do đó: M là trung điểm của AC
a) Dùng Pytago ta tính được OH=9cmOH=9cm
b) Vì AB=AC và OB=OC=R nên OA là đường trung trực BC
Mà H là trung điểm BC
=>A,H,O=>A,H,O thẳng hàng.
c.\(\Delta ABO\) Vuông tại B đươngg cao BH
\(\Rightarrow\frac{1}{AB^2}=\frac{1}{BH^2}-\frac{1}{OB^2}\)
\(\Rightarrow\frac{1}{12^2}-\frac{1}{15^2}=\frac{1}{400}\)
\(\Rightarrow AB=20cm\)