K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

em moi hoc lop 8 anh oi

22 tháng 6 2017

T.T Bài không phải dễ mà là rất dễ 
Chịu khó mà nghĩ (((:

CHo nửa đường tròn tâm O đường Kính AB. Vẽ 2 tiếp tuyến Ax và By cùng nửa mặt phẳng vs đường tròn. Lấy M trên nửa đường tròn. Tiếp tuyến tại M cắt Ax và By tại C, D.tìm vị trí của M để AC+BD nhỏ nhấtAM song song với ODgọi I, N là giao điểm của AM với CO, BM với OD. CMR tứ giác MION là hình chữ nhậtAB tiếp xúc với đường tròn đường kính CDIN là đường trung bình tam giác MABgọi I' là...
Đọc tiếp

CHo nửa đường tròn tâm O đường Kính AB. Vẽ 2 tiếp tuyến Ax và By cùng nửa mặt phẳng vs đường tròn. Lấy M trên nửa đường tròn. Tiếp tuyến tại M cắt Ax và By tại C, D.

  1. tìm vị trí của M để AC+BD nhỏ nhất
  2. AM song song với OD
  3. gọi I, N là giao điểm của AM với CO, BM với OD. CMR tứ giác MION là hình chữ nhật
  4. AB tiếp xúc với đường tròn đường kính CD
  5. IN là đường trung bình tam giác MAB
  6. gọi I' là giao điểm của OM với Ax. CMR: I'C.OD = I'O.CO
  7. Tam giác AMB là tam giác vuông
  8. tam giác IAO đồng dạng với tam giác NOB
  9. Gọi R là bán kính của (O), r là bán kính đường tròn nội tiếp tam giác COD.CMR: 2<R/r<3
  10. Gọi K là giao điểm của AD với BC. MK cắt AB tại H. CMR: MH vuông góc với AB
  11. Tìm vị trí của M để tam giác MHO lớn nhất
  12. kéo dài CO cắt DB tại Q. CMR: tam giác DCQ cân tại D
  13. Gọi D', E', F' là giao điểm của CD với AB, BM với Ax, D'E' với By. CMR: A, M, F' thẳng hàng
  14. 2MH2 = MA.MB
  15. CB,AD,IN,MH đồng quy
  16. gọi L là giao điểm của EA và DO. CMR: DEL là tam giác cân
0
29 tháng 4 2020

E C M K I H A B O

a . Ta có : \(C\in\left(O\right),AB=2R\Rightarrow\widehat{ACB}=90^0\Rightarrow\Delta ABC\) vuông tại C

c . Vì \(OK\perp BC\Rightarrow B,C\) đối xứng qua OK

\(\Rightarrow\widehat{DCO}=\widehat{DBO}=90^0\Rightarrow DC\)  là tiếp tuyến của (O) 

d . Ta có \(AC=R\Rightarrow\Delta AOC\) đều 

\(\Rightarrow\widehat{COM}=\widehat{MOB}=60^0\Rightarrow\Delta OCM,OMB\) đều 

\(\Rightarrow OC=OM=OB=MB=MC\)=> ◊OBMC là hình thoi

e . Ta có : 

\(\Delta ACO\) đều 

\(\Rightarrow CH==\frac{R\sqrt{3}}{2}\Rightarrow CI=IH=\frac{R\sqrt{3}}{4}\)

\(\Rightarrow\frac{CI}{DB}=\frac{CI}{BC}=\frac{\frac{R\sqrt{3}}{4}}{R\sqrt{3}}=\frac{1}{4}=\frac{AH}{AB}=\frac{EI}{EB}\)

\(\Rightarrow\Delta ECI~\Delta EDB\left(c.g.c\right)\Rightarrow\widehat{CEI}=\widehat{DEB}\Rightarrow E,C,D\) thẳng hàng 

24 tháng 12 2016

A B O C k D H E I M

a) xét tam giác ABC nội tiếp đường tròn (O) có cạnh AB là đường kính =>tam giác ABC vuông tại C

b) có tam giác ABC vuông tại C từ pitago ta có

AB\(^2\)=AC\(^2\)+BC\(^2\)=>BC=\(\sqrt{AB^2-AC^2}=\sqrt{4R^2-R^2}=R\sqrt{3}\)

tam giác AOC có AC=AO=CO=R => tam giác AOC đều =>

\(\widehat{CAO}=60\)độ =>góc CBA = 30 độ (tam giác ABC vuông tại C)

c)xét tam giác COB có OC=OB=R=>tam giác COB cân tại O có OK vừa là trung tuyến (k là trung điểm CB) vừa là phân giác

=>góc COK=góc BOK hay góc COD=góc BOD

xét 2 tam giác COD và BOD có OC=OB, góc COD=góc BOD,OD là cạnh chung

tam giác COD = tam giác BOD(c-g-c) =>góc DCO=góc DBO=90 độ

mà OC = R =>CD là tiếp tuyến of (O)

d) Vì OC=OB,DC=DB=> OD là đường trung trực of BC mà M thuộc OD =>MC=MB (1)OD vuông góc CB => góc CKM = 90 độ

Tam giác CKO vuông tại K từ pitago có OK = \(\sqrt{CO^2-CK^2}=\sqrt{CO^2-\frac{BC^2}{4}}=\sqrt{R^2-\frac{3R^2}{4}}=\frac{R}{2}\)

=> KM = OM - OK = R - \(\frac{R}{2}=\frac{R}{2}\)=OK

tương tự xét tam giác CMK vuông tại K có CM =R (2)

có OC=OB (3)

Từ ( 1 ) ; (2);(3) => OC = CM =MB = OB =R =>Tứ giác OCMB là hình thoi

e) Tương tự câu b ta có tam giác EAO = ECO ( c-g-c)

=> Góc ECO = Góc EAO = 90 độ . 

Ta có : Góc ECD = Góc ECO + Góc OCD = 90 độ + 90 độ = 180 độ

=> E ; C ; D thẳng hàng

1 tháng 1 2018

Bạn OOOĐỒ DỐI TRÁ OOO​ ơi , cho mình hỏi là phần d í , tại sao OK = Căn của R^2 - BC^2 / 4 nnhir ? Mình không hiểu đoạn BC^2 / 4