K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2019

viết đề sai rùi bạn

b) chứng minh tứ giác POMQ LÀ hình chữ nhật chứ ko phải chứng minh AQMO LÀ HÌNH CHỮ NHẬT OK

a: Xét (O) co

CM,CA là tiếp tuyên

=>CM=CA 

Xét (O) có

DM,DB là tiếp tuyến

=>DM=DB

CD=CM+MD

=>CD=CA+BD

b: Xet ΔACN và ΔDBN có

góc NAC=góc NDB

góc ANC=góc DNB

=>ΔACN đồng dạng vơi ΔDBN

=>AC/BD=AN/DN

=>CN/MD=AN/ND

=>MN/AC

 

20 tháng 5 2017

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Ax ⊥ AB

By ⊥ AB

Suy ra: Ax // By hay AC // BD

Trong tam giác BND, ta có AC // BD

Suy ra: ND/NA = BD/AC (hệ quả định lí Ta-lét)     (1)

Theo tính chất hai tiếp tuyến cắt nhau, ta có:

AC = CM và BD = DM      (2)

Từ (1) và (2) suy ra: ND/NA = MD/MC

Trong tam giác ACD, ta có: ND/NA = MD/MC

Suy ra: MN // AC (theo định lí đảo định lí Ta-lét)

Mà: AC ⊥ AB (vì Ax ⊥ AB)

Suy ra: MN ⊥ AB

29 tháng 12 2021

bạn ghi thiếu r ;v

9 tháng 10 2017

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Trong tam giác ACD, ta có: MN // AC

Suy ra: MN/AC = DN/DA (hệ quả định lí Ta-lét)     (3)

Trong tam giác ABC, ta có: MH // AC (vì M, N, H thẳng hàng)

Suy ra: HN/AC = BN/BC (hệ quả định lí Ta-lét)     (4)

Trong tam giác BDN, ta có: AC // BD

Suy ra: ND/NA = BN/NC (hệ quả định lí Ta-lét)

⇒ ND/(DN + NA) = BN/(BN + NC) ⇔ ND/DA = BN/BC      (5)

Từ (3), (4) và (5) suy ra: MN/AC = HN/AC ⇒ MN = HN

24 tháng 6 2017

Tính chất hai tiếp tuyến cắt nhau

Tính chất hai tiếp tuyến cắt nhau

20 tháng 11 2021

a, Vì CA = CM ( tc tiếp tuyến cắt nhau ) 

OA = OM = R 

=> OC là đường trung trực đoạn AM 

=> OC vuông AM 

^AMB = 900 ( góc nội tiếp chắn nửa đường tròn ) 

=> AM vuông MB (1)

Ta có : DM = DB ( tc tiếp tuyến cắt nhau ) 

OM = OB = R 

=> OD là đường trung trực đoạn MB 

=> OD vuông MB (2) 

Từ (1) ; (2) => OD // AM 

b, OD giao MB = {T}

OC giao AM = {U} 

Xét tứ giác OUMT có ^OUM = ^UMT = ^MTO = 900

=> tứ giác OUMT là hcn => ^UOT = 900 

Vì CD là tiếp tuyến (O) với M là tiếp điểm => ^OMD = 900 

Mặt khác : BD = DM ( tc tiếp tuyến cắt nhau ) 

CM = AC ( tc tiếp tuyến cắt nhau ) 

Xét tam giác COD vuông tại O, đường cao OM 

Ta có : \(OM^2=CM.MD\)hay \(OM^2=AC.BD\)=> R^2 = AC.BD 

c, Gọi I là trung điểm CD 

O là trung điểm AB 

khi đó OI là đường trung bình hình thang BDAC 

=> OI // AC mà AC vuông AB ( tc tiếp tuyến ) => OI vuông AB 

Xét tam giác COD vuông tại O, I là trung điểm => OI = IC = ID = R 

Vậy AB là tiếp tuyến đường tròn (I;CD/2)