K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 6 2021

a.tứ giác AMDO nội tiếp (∠AOD+∠AMD=180)

⇒BD.BM=BO.BA

mà A,B,O cố định nên BO.BA không đổi

⇒BD.BM không có giá trị phụ thuộc  vào vị trí điểm m

b.có ∠EMB=\(\dfrac{1}{2}\stackrel\frown{MB}\) (góc tạo bởi tia tiếp tuyến và dây cung)

do tứ giác AMDO nội tiếp⇒∠MAO=∠MDE(1)

∠MAO=\(\dfrac{1}{2}\stackrel\frown{MB}\)

⇒∠EMB=∠MAO(2)

từ (1) và (2) ⇒∠EMB=∠MDE

⇒ΔEMD cân tại E

⇒ED=EM

11 tháng 7 2021

AB cắt đường tròn ngoại tiếp tam giác AEK tại D

Vì AB là đường kính \(\Rightarrow\angle AMB=90\Rightarrow\angle EMB+\angle EHB=90+90=180\)

\(\Rightarrow EMBH\) nội tiếp \(\Rightarrow\angle KBD=\angle MBH=\angle AEH\)

Vì KEAD nội tiếp \(\Rightarrow\angle AEH=\angle KDB\Rightarrow\angle KBD=\angle KDB\)

\(\Rightarrow\Delta KDB\) cân tại K có KH là đường cao 

\(\Rightarrow H\) là trung điểm BD mà B,H cố định \(\Rightarrow D\) cố định

Vì KEAD nội tiếp \(\Rightarrow I\in\) trung trực AD mà A,D cố định

\(\Rightarrow\) đpcmundefined

14 tháng 7 2019

A B O C D M E F K I N L

Gọi BE cắt đường tròn (O) tại điểm thứ hai là N. Gọi L là hình chiếu của I trên ME.

Dễ thấy ^BNA = 900. Suy ra \(\Delta\)BNA ~ \(\Delta\)BCE (g.g) => BN.BE = BC.BA 

Cũng dễ có \(\Delta\)BMA ~ \(\Delta\)BCK (g.g) => BC.BA = BM.BK. Do đó BN.BE = BM.BK

Suy ra tứ giác KENM nội tiếp. Từ đây ta có biến đổi góc: ^KNA = 3600 - ^ANM - ^KNM

= (1800 - ^ANM) + (1800 - ^KNM) = ^ABM + (1800 - ^AEM) = ^EFM + ^MEF = ^KFA

=> 4 điểm A,K,N,F cùng thuộc một đường tròn. Nói cách khác, đường tròn (I) cắt (O) tại N khác A

=> OI vuông góc AN. Mà AN cũng vuông góc BE nên BE // OI (1)

Mặt khác dễ có E là trung điểm dây KF của (I) => IE vuông góc KF => IE // AB (2)

Từ (1);(2) suy ra BOIE là hình bình hành => IE = OB = const

Ta lại có EM,AB cố định => Góc hợp bởi EM và AB không đổi. Vì IE // AB nên ^IEL không đổi

=> Sin^IEL = const hay \(\frac{IL}{IE}=const\). Mà IE không đổi (cmt) nên IL cũng không đổi

Vậy I di động trên đường thẳng cố định song song với ME, cách ME một khoảng không đổi (đpcm).

a: C là điểm chính giữa của cung AB

=>OC vuông góc AB

góc OHE=góc OME=90 độ

=>OHME nội tiếp

b: góc AMB=1/2*sđ cung AB=90 độ

=>góc AMH+góc AOH=180 độ

=>OHMA nội tiếp

=>O,H,M,E,A cùng thuộc 1 đường tròn

=>góc EAO=90 độ

OHEA có 3 góc vuông

=>OHEA là hcn

=>EH=OA=R