Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình bạn tự vẽ nhé!
Gọi I là trung điểm của DE.
Từ I dựng IH vuông góc với AB tại H.
Ta có: Ax//By
=> Tứ giác ABED là hình thang.
và ID = IE (I là trung điểm của DE)
OA = OB (O là tâm của đường tròn đường kính AB)
=> OI là đường trung bình của hinh thang ABED
=> OI//AD
=> SAOI = SDOI
=> 1/2.OA.IH = 1/2.DI.OC
Mà OI = OC
=> IH = DI = IE
Mà IH vuông góc với AB (cách lấy điểm H)
=> AB là tiếp tuyens của đường tròn đường kính DE.
Kẻ OI ⊥⊥ AB ( I ∈∈ CD) ta suy ra OI là đường trung bình của hình thang ABCD và CI = ID.
Khi đó I là tâm đường tròn đường kính CD và IO là khoảng cách d từ tâm I đến AB.
Ta có IO=CA+DB2 =MC+MD2 =DC2 là bán kính của đường tròn (I).
Do đó AB tiếp xúc với đường tròn đường kính CD.
Kẻ OI \bot⊥ AB ( I \in∈ CD) ta suy ra OI là đường trung bình của hình thang ABCD và CI = ID.
Khi đó I là tâm đường tròn đường kính CD và IO là khoảng cách d từ tâm I đến AB.
Ta có IO=\dfrac{CA+DB}{2}=\dfrac{MC+MD}{2}=\dfrac{DC}{2}IO=2CA+DB=2MC+MD=2DC là bán kính của đường tròn (I).
Do đó AB tiếp xúc với đường tròn đường kính CD.
a: Xét (O) có
CM là tiếp tuyến
CA là tiếp tuyến
Do đó: CM=CA và OC là tia phân giác của góc MOA(1)
Xét (O) có
DM là tiếp tuyến
DB là tiếp tuyến
Do đó: DM=DB và OD là tia phân giác của góc MOB(2)
Từ (1) và (2) suy ra \(\widehat{COD}=\dfrac{1}{2}\left(\widehat{MOA}+\widehat{MOB}\right)=\dfrac{1}{2}\cdot180^0=90^0\)
hay ΔCOD vuông tại O
b: Xét ΔCOD vuông tại O có OM là đường cao
nên \(MC\cdot MD=MO^2=R^2=AC\cdot BD\)
Ta có:
ˆO1+ˆO2+ˆO3+ˆO4=180o�1^+�2^+�3^+�4^=180�
⇔ˆO2+ˆO2+ˆO3+ˆO3=180o⇔�2^+�2^+�3^+�3^=180� (do ˆO1=ˆO2, ˆO3=ˆO4�1^=�2^, �3^=�4^)
⇔2ˆO2+2ˆO3=180o⇔ˆO2+ˆO3=90o⇔ˆCOD=90o⇔2�2^+2�3^=180�⇔�2^+�3^=90�⇔���^=90�
b)
Ta có: CM = AC, MD = BD (chứng minh trên)
Lại có: CD = CM + MD = AC + BD (đcpcm)
c)
Ta có: CM = AC, MD = BD (chứng minh trên)
Xét tam giác COD vuông tại O
Áp dụng hệ thức lượng trong tam giác vuông có:
MO2=MC.MD=AC.BD=R2��2=��.��=��.��=�2 (do MO = R)
Vì bán kính đường tròn không đổi khi M di chuyển trên nửa đường tròn nên không đổi do đó tích AC. BD không đổi khi M di chuyển trên nửa đường tròn.
1: Xét (O) có
CA,CM là tiếp tuyến
=>CA=CM và OC là phân giác của góc MOA(1)
Xét (O) có
DM,DB là tiếp tuyến
=>DM=DB và OD là phân giác của góc MOB(2)
Từ (1), (2) suy ra góc COM+góc DOM=1/2(góc MOA+góc MOB)
=>góc COD=1/2*góc AOB=90 độ
2: CD=CM+MD
mà CM=CA và MD=DB
nên CD=CA+DB
3: AC*BD=CM*MD
Xét ΔOCD vuông tại O có OM là đường cao
nên CM*MD=OM^2
=>AC*BD=R^2 không đổi