Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham khảo
https://asknlearn247.com/question/cho-duong-tron-o-r-duong-kinh-ab-co-dinh-tren-tia-doi-cua-tia-ab-lay-diem-c-sao-cho-ac-r-qua-c-k-2018212/
a, Xét (O), đường kính AB có: M ∈ (O)
⇒ ˆAMB=90°AMB^=90° (góc nội tiếp chắn nửa đường tròn)
⇒ AM ⊥ BP ⇒ ˆAMP=90°AMP^=90°
PC ⊥ AC (gt) ⇒ ˆACP=90°ACP^=90° Hay ˆBCP=90°BCP^=90°
Xét tứ giác ACPM có: ˆAMP+ˆACP=90°+90°=180°AMP^+ACP^=90°+90°=180°
Mà hai góc này ở vị trí đối nhau
⇒ Tứ giác ACPM nội tiếp đường tròn đường kính AP
b, Xét ΔBMA và ΔBCP có:
ˆBMA=ˆBCP=90°BMA^=BCP^=90°
ˆPBCPBC^: góc chung
⇒ ΔBMA ~ ΔBCP (g.g)
⇒ BMBC=BABPBMBC=BABP (các cặp cạnh tương ứng tỉ lệ)
⇒ BM.BP = BA.BC
Có BC=BA+CA=2R+R=3R
⇒ BM.BP=BA.BC=2R.3R=6R²
c, Tứ giác ACPM nội tiếp đường tròn đường kính AP (cmt)
⇒ ˆCPA=ˆCMACPA^=CMA^ (góc nội tiếp chắn CACA⏜)
Hay ˆCPQ=ˆCMACPQ^=CMA^
Xét (O) có: A, M, N, Q ∈ (O)
⇒ Tứ giác AMNQ nội tiếp (O)
⇒ ˆAQN+ˆAMN=180°AQN^+AMN^=180° (tổng hai góc đối trong tứ giác nội tiếp)
Mà ˆAMC+ˆAMN=180°AMC^+AMN^=180° (hai góc kề bù)
⇒ ˆAQN=ˆCMAAQN^=CMA^ Hay ˆPQN=ˆCMAPQN^=CMA^
Mà ˆCPQ=ˆCMACPQ^=CMA^ (cmt)
⇒ ˆCPQ=ˆPQNCPQ^=PQN^
Mà hai góc này ở vị trí so le trong so PQ cắt CP và NQ
⇒ CP // NQ
d, Gọi D là trung điểm của BC, kẻ đường thẳng qua Q song song với MO cắt AO tại I
Mà BC cố định ⇒ D cố định
Có O, D cố định ⇒ I cố định
Xét ΔMBC có: G là trọng tâm của ΔMBC (gt)
⇒ DGDM=13DGDM=13
Xét ΔOMD có: GI // MO (cách vẽ)
⇒ DGDM=GIMODGDM=GIMO (hệ quả định lí Talet)
⇒ GIMO=13⇒GI=MO3=R3GIMO=13⇒GI=MO3=R3
Mà R không đổi
⇒ G luôn cách I một khoảng bằng R3R3
⇒ Khi M di động, G luôn thuộc đường tròn tâm I, bán kính R3R3
a) Vì AB là đường kính \(\Rightarrow\angle ANB=90\)
\(\Rightarrow\angle FNB+\angle FCB=90+90=180\Rightarrow BCFN\) nội tiếp
b) Vì AB là đường kính \(\Rightarrow\angle ADB=90\)
Xét \(\Delta ACE\) và \(\Delta ADB:\) Ta có: \(\left\{{}\begin{matrix}\angle ADB=\angle ACE=90\\\angle BAEchung\end{matrix}\right.\)
\(\Rightarrow\Delta ACE\sim\Delta ADB\left(g-g\right)\Rightarrow\dfrac{AC}{AD}=\dfrac{AE}{AB}\Rightarrow AD.AE=AB.AC\)
a: góc BNA=1/2*180=90 độ
góc FNB+góc FCB=180 độ
=>FCBN nội tiếp
b: góc ADB=1/2*180=90 độ
Xét ΔADB vuông tạiD và ΔACE vuông tại C có
góc A chung
=>ΔADB đồng dạng với ΔACE
=>AD/AC=AB/AE
=>AC*AB=AD*AE
c: Xét ΔEAB có
EC,AN là đường cao
EC cắt AN tại F
=>F là trực tâm
=>BF vuông góc AE
mà BD vuông góc AE
nên B,F,D thẳng hàng
A,D,N,B cùng thuộc (O)
nên ADNB nội tiếp
=>góc ADN+góc ABN=180 độ
=>góc EDN=góc EBA
A,D,N,B cùng thuộc (O)
nên ADNB nội tiếp
=>góc ADN+góc ABN=180 độ
=>góc EDN=góc EBA
1) Vì AB là đường kính \(\Rightarrow\angle ADB=90\) mà \(\angle ECB=90\Rightarrow BCDE\) nội tiếp
2) Vì \(\left\{{}\begin{matrix}EF\bot AB\\AF\bot EB\end{matrix}\right.\Rightarrow F\) là trực tâm tam giác EAB \(\Rightarrow BF\bot AE\)
mà \(BD\bot AE\left(\angle BDA=90\right)\Rightarrow B,F,D\) thẳng hàng
Ta có: \(\angle FNB+\angle FCB=90+90=180\Rightarrow FNBC\) nội tiếp
Xét \(\Delta AFC\) và \(\Delta ABN:\) Ta có: \(\left\{{}\begin{matrix}\angle ACF=\angle ANB=90\\\angle NABchung\end{matrix}\right.\)
\(\Rightarrow\Delta AFC\sim\Delta ABN\left(g-g\right)\Rightarrow\dfrac{AF}{AC}=\dfrac{AB}{AN}\Rightarrow AF.AN=AB.AC\)
Tương tự \(\Rightarrow BF.BD=BC.BA\)
\(\Rightarrow AF.AN+BF.BD=AB.AC+AB.BC=AB^2=4R^2\)
3) Gọi G là giao điểm của (AEF) và AB
Ta có: \(\angle FGB=\angle AEF\left(AEFGnt\right)=\angle DBA\left(BCDEnt\right)\Rightarrow\Delta GFB\) cân tại F có \(FC\bot GB\Rightarrow CB=CG\)
mà C,B cố định \(\Rightarrow G\) cố định
Vì AEFG nội tiếp \(\Rightarrow I\in\) trung trực AG mà A,G cố định \(\Rightarrow\) đpcm
Muốn viết tất cả các số tự nhiên từ 100 đến 999 phải dùng hết bao nhiên chữ số 5?
giải
ta có 100 chia hết cho 5
và số lớn nhất chia hết cho 5 trong dãy số này là:
995
vì cứ mỗi số chia hết cho 5 thì cách 5 đơn vị thì lại là một số chia hết cho 5
nên
từ 100-995 có số chữ số 5 là:
(995-100):5+1=180(số)
đáp số:180 số
đúng thì thanks mình nhé!
dễ thôi