Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) Gọi giao điểm của BM với Ax là I. Từ M kẻ MK vuông góc với AB. BC cắt MK tại E.
Vì MK vuông góc AB => MK // AC // BD
EK // AC => \(\frac{EK}{AC}=\frac{BE}{BC}\); ME // IC => \(\frac{ME}{IC}=\frac{BE}{BC}\) => \(\frac{EK}{AC}=\frac{ME}{IC}\)
Tam giác MIA vuông tại M có CA = CM => góc CAM = góc CMA => góc CIM = góc CMI => tam giác CMI cân tại C => CI = CM => CM = CI = CA => EK = ME.
\(EK=ME\Rightarrow\frac{EK}{BD}=\frac{ME}{BD}\)mà \(\frac{ME}{BD}=\frac{CM}{CD}=\frac{AK}{AB}\Rightarrow\frac{EK}{BD}=\frac{AK}{AB}\)
=> Tam giác AKE đồng dạng với tam giác ABD (c.g.c) => góc EAK = góc DAK => A,E,D thẳng hàng => BC cắt AD tại E mà theo giả thiết BC cắt AD tại N => E trùng với N => H trùng với K => N là trung điểm MH.
a: Xét tứ giác AMIO có
\(\widehat{MAO}+\widehat{MIO}=180^0\)
Do đó; AMIO là tứ giác nội tiếp
Xét (O) có
MI là tiếp tuyến
MA là tiếp tuyến
Do đó: MI=MA và OM là tia phân giác của góc IOA(1)
Xét (O) có
NI là tiếp tuyến
NB là tiếp tuyến
Do đó: NI=NB và ON là tia phân giác của góc IOB(2)
Ta có: MI+NI=MN
nên MN=MA+NB
b: Từ (1) và (2) suy ra \(\widehat{MON}=\widehat{MOI}+\widehat{NOI}=\dfrac{1}{2}\left(\widehat{IOA}+\widehat{IOB}\right)=\dfrac{1}{2}\cdot180^0=90^0\)
Xét ΔMON vuông tại O có OI là đường cao
nên \(IM\cdot IN=OI^2\)
hay \(AM\cdot BN=R^2\)
em tham khảo:
như kiểu trên mạng có hết :V