K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2020

Bạn tự vẽ hình nhé : 

1.Vì CM,CA là tiếp tuyến của (O) 

\(\Rightarrow CM\perp OM,CA\perp OA\)

\(\Rightarrow CAOM\)nội tiếp đường tròn đường kính OC

Tương tự DMOB nội tiếp đường tròn đường kính OD

2 . Vì CM,CA là tiếp tuyến của (O)

\(\Rightarrow CM=CA,OC\) là phân giác \(\widehat{AOM}\)

Tương tự DM = DB , OD là phân giác ^BOM

Mà \(\widehat{AOM}+\widehat{MOB}=180^0\)

\(\Rightarrow OC\perp OD\)

Lại có ; \(OM\perp CD\Rightarrow CM.DM=OM^2\Rightarrow CM.DM=R^2\)

Mà : \(CM=CA,DM=DB\Rightarrow AC.BD=R^2\Rightarrow AC.3R=R^2\Rightarrow AC=\frac{R}{3}\)

\(\Rightarrow S_{ABCD}=\frac{1}{2}AB\left(BD+CA\right)=\frac{1}{2}.2R.\left(3R+\frac{R}{3}\right)=\frac{10R^2}{3}\)

3.Vì CM,CA là tiếp tuyến của (O) 

\(\Rightarrow CO\perp AM=E\) là trung điểm AM

Tương tự \(OD\perp BM=F\) là trung điểm BM

\(\Rightarrow MN\) là đường trung bình \(\Delta ABC\Rightarrow EF//MN\)

Mà \(OE\perp ME,OF\perp MF,MN\perp ON\)

\(\Rightarrow M,E,N,O,F\in\) đường tròn đường kính OM 

\(\Rightarrow EFNO\) nội tiếp 

\(\Rightarrow\widehat{EFO}+\widehat{ENO}=180^0\)

Mà \(\widehat{NEF}+\widehat{ENO}=180^0\) ( EF // AB => EF//NO ) 

\(\Rightarrow EFON\) là hình thang cân 

20 tháng 11 2021

a, Vì CA = CM ( tc tiếp tuyến cắt nhau ) 

OA = OM = R 

=> OC là đường trung trực đoạn AM 

=> OC vuông AM 

^AMB = 900 ( góc nội tiếp chắn nửa đường tròn ) 

=> AM vuông MB (1)

Ta có : DM = DB ( tc tiếp tuyến cắt nhau ) 

OM = OB = R 

=> OD là đường trung trực đoạn MB 

=> OD vuông MB (2) 

Từ (1) ; (2) => OD // AM 

b, OD giao MB = {T}

OC giao AM = {U} 

Xét tứ giác OUMT có ^OUM = ^UMT = ^MTO = 900

=> tứ giác OUMT là hcn => ^UOT = 900 

Vì CD là tiếp tuyến (O) với M là tiếp điểm => ^OMD = 900 

Mặt khác : BD = DM ( tc tiếp tuyến cắt nhau ) 

CM = AC ( tc tiếp tuyến cắt nhau ) 

Xét tam giác COD vuông tại O, đường cao OM 

Ta có : \(OM^2=CM.MD\)hay \(OM^2=AC.BD\)=> R^2 = AC.BD 

c, Gọi I là trung điểm CD 

O là trung điểm AB 

khi đó OI là đường trung bình hình thang BDAC 

=> OI // AC mà AC vuông AB ( tc tiếp tuyến ) => OI vuông AB 

Xét tam giác COD vuông tại O, I là trung điểm => OI = IC = ID = R 

Vậy AB là tiếp tuyến đường tròn (I;CD/2) 

9 tháng 4 2022

a) Tứ giác EFMK có góc E và góc M vuông (vì đều bằng các góc chắn nửa đường tròn) nên là tứ giác nội tiếp.

b) Ta có 

\widehat{HAF}=\widehat{ABE}HAF=ABE (Góc tạo bởi tia tiếp tuyến và dây cung bằng góc nội tiếp cùng chắn cung);

\widehat{EAM}=\widehat{EBM}EAM=EBM ( góc nội tiếp cùng chắn cung \stackrel\frown{EM}EM)

mà \widehat{HAF}=\widehat{EAM}HAF=EAM (AEAE là tia phân giác góc IAM)

nên \widehat{ABE}=\widehat{EBM}ABE=EBM, hay BE là tia phân giác góc ABM.

Mặt khác BE cũng là đường cao trong tam giác ABF nên tam giác ABF cân tại B.

c) Tam giác HAK có AE vừa là phân giác vừa là đường cao nên nó cân tại A. Suy ra E là trung điểm HK.

Tứ giác HFKA có hai đường chéo vuông góc với nhau tại trung điểm mỗi đường nên là hình thoi.

d) HFKA là hình thoi nên FK // HA, suy ra tứ giác IFKA là hình thang.

Để IFKA nội tiếp được đường tròn thì nó phải là hình thang cân, hay tam giác MIA vuông cân tại M.

Khi đó, \widehat{IAM}=45^{\circ}\Rightarrow\widehat{MAB}=45^{\circ},IAM=45MAB=45, tam giác MAB vuông cân tại M. Do đó M là điểm chính giữa cung nửa đường tròn AB.