Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tam giác ABC nội tiếp đường tròn (O) đường kính BC
=> OA=OB=OC và O là trung điểm của BC
=> Tam giác ABC vuông tại A
=> góc BAC = 90 độ
b) DO tam giác HAK nội tiếp đường tròn (I)
Lại có góc HAK = 90 độ
=> HK là đường kính của (I)
=> HK đi qua I
=> H,I,K thẳng hàng
c) Đề bài ghi ko rõ
d) 3 điểm nào?
a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔOKB vuông tại O có OI là đường cao ứng với cạnh huyền BK, ta được:
\(IK\cdot IB=OI^2\)(1)
Xét (O) có
BC là dây khác đường kính
OA là một phần đường kính
BC⊥OA tại I(gt)
Do đó: I là trung điểm của BC(Định lí đường kính vuông góc với dây)
hay IB=IC(2)
Từ (1) và (2) suy ra \(IK\cdot IC=OI^2\)
Xét ΔABC có
AI là đường cao ứng với cạnh BC(AI⊥BC)
AI là đường trung tuyến ứng với cạnh BC(I là trung điểm của BC)
Do đó: ΔABC cân tại A(Định lí tam giác cân)
⇒AB=AC
Xét ΔABO và ΔACO có
AB=AC(cmt)
OB=OC(=R)
OA chung
Do đó: ΔABO=ΔACO(c-c-c)
⇒\(\widehat{ABO}=\widehat{ACO}\)(hai góc tương ứng)
mà \(\widehat{ABO}=90^0\)(AB là tiếp tuyến của (O) có B là tiếp điểm)
nên \(\widehat{ACO}=90^0\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔOCA vuông tại C có CI là đường cao ứng với cạnh huyền OA, ta được:
\(OI\cdot IA=CI^2\)
Áp dụng định lí Pytago vào ΔOIC vuông tại I, ta được:
\(OC^2=OI^2+IC^2\)
\(\Leftrightarrow IK\cdot IC+OI\cdot IA=R^2\)(đpcm)