\(OC\perp AB\) . Trên các cung CA và C...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét (O) có

M là một điểm nằm trên cung \(\stackrel\frown{CA}\)(gt)

nên \(sđ\stackrel\frown{CM}+sđ\stackrel\frown{MA}=sđ\stackrel\frown{CA}\)(1)

Xét (O) có 

N là một điểm nằm trên cung \(\stackrel\frown{CB}\)(gt)

nên \(sđ\stackrel\frown{CN}+sđ\stackrel\frown{NB}=sđ\stackrel\frown{CB}\)(2)

Xét (O) có AB là đường kính(gt)

nên O là trung điểm của AB

Xét ΔCAB có

CO là đường cao ứng với cạnh AB(gt)

CO là đường trung tuyến ứng với cạnh AB(O là trung điểm của AB)

Do đó: ΔCAB cân tại C(Định lí tam giác cân)

⇒CA=CB

\(sđ\stackrel\frown{CA}=sđ\stackrel\frown{CB}\)(3)

Từ (1), (2) và (3) suy ra \(sđ\stackrel\frown{CM}+sđ\stackrel\frown{AM}=sđ\stackrel\frown{CN}+sđ\stackrel\frown{NB}\)

mà \(sđ\stackrel\frown{CM}=sđ\stackrel\frown{BN}\)(gt)

nên \(sđ\stackrel\frown{AM}=sđ\stackrel\frown{CN}\)

hay \(\stackrel\frown{AM}=\stackrel\frown{CN}\)(đpcm)

Xét (O) có

AM là dây cung(A,M∈(O))

CN là dây cung(C,N∈(O))

\(\stackrel\frown{AM}=\stackrel\frown{CN}\)(cmt)

Do đó: AM=CN(Liên hệ giữa cung và dây)

6 tháng 2 2021

b) Do \(\stackrel\frown{AM}=\stackrel\frown{CN}\) (theo câu a) => \(\widehat{AOM}=\widehat{CON}\)

Mà \(\widehat{AOM}+\widehat{MOC}=\widehat{AOC}=90^o\) => \(\widehat{NOC}+\widehat{MOC}=\widehat{MON}=90^o\)

Xét ΔOMN và ΔOAC có: \(\widehat{MON}=\widehat{AOC}=90^o\)

                                         OA = OM (=bán kính nửa đường tròn)

                                          OC = ON (=bán kính nửa đường tròn)

=> ΔOMN = ΔOAC (c.g.c) => MN = AC (2 cạnh tương ứng)

CMTT => ΔOMN = ΔOBC => MN = BC (2 cạnh tương ứng)

=> MN = AC = BC

11 tháng 6 2017

bạn ơi sai đề

\(\sqrt{x-10}\ge0\) ( với x >= 10 ).

11 tháng 6 2017

bạn ơi sai đề rồi ; căn bật sao âm được

30 tháng 5 2017

\(\sqrt{\left(\sqrt{5}\right)^2-2\sqrt{5}+1}=\sqrt{\left(\sqrt{5}-1\right)^2}\)

\(=|\sqrt{5}-1|\)

= \(\sqrt{5}-1\)

30 tháng 5 2017

cảm ơn bn nhiềuvui

24 tháng 5 2017

1, đk: \(x>0\)\(x\ne4\)

Ta có: A=\(\dfrac{1}{2\sqrt{x}-x}=\dfrac{1}{-\left(x-2\sqrt{x}+1\right)+1}=\dfrac{1}{-\left(\sqrt{x}-1\right)^2+1}\)

Ta luôn có: \(-\left(\sqrt{x}-1\right)^2\le0\) với \(x>0\)\(x\ne4\)

\(\Rightarrow-\left(\sqrt{x}-1\right)^2+1\le1\)

\(\Rightarrow A\ge1\). Dấu "=" xảy ra <=> x=1 (t/m)

Vậy MinA=1 khi x=1

2, đk: \(x\ge0;x\ne1;x\ne9\)

Ta có: B=\(\dfrac{1}{x-4\sqrt{x}+3}=\dfrac{1}{\left(x-4\sqrt{x}+4\right)-1}=\dfrac{1}{\left(\sqrt{x}-2\right)^2-1}\)

Ta luôn có: \(\left(\sqrt{x}-2\right)^2\ge0\) với \(x\ge0;x\ne1;x\ne9\)

\(\Rightarrow\left(\sqrt{x}-2\right)^2-1\ge-1\)

\(\Rightarrow B\le-1\). Dấu "=" xảy ra <=> x=4 (t/m)

Vậy MaxB=-1 khi x=4

3, đk: \(x\ge0;x\ne15+4\sqrt{11}\)

Ta có: C=\(\dfrac{1}{4\sqrt{x}-x+7}=\dfrac{1}{-\left(x-4\sqrt{x}+4\right)+11}=\dfrac{1}{-\left(\sqrt{x}-2\right)^2+11}\)

Ta luôn có: \(-\left(\sqrt{x}-2\right)^2\le0\) với \(x\ge0;x\ne15+4\sqrt{11}\)

\(\Rightarrow-\left(\sqrt{x}-2\right)^2+11\le11\)

\(\Rightarrow C\ge\dfrac{1}{11}\). Dấu "=" xảy ra <=> x=4 (t/m)

Vậy MinC=\(\dfrac{1}{11}\) khi x=4

11 tháng 6 2017

4

11 tháng 6 2017

\(\pm4\)