Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c. Bạn C/m Tam Giác HOF- Tam giác KOA đồng dạng
=>OH/OK=OF/OA
=>OK.OF= OH.OA=OB^2=OD^2
=>OK/OD=OD/OF
=> Tam giác ODK và Tam giác OFD đồng dạng
=>Tam giác ODF vuông tại D
=>FD la tiếp tuyến của (O) (đpcm)
d. EI=BI=IA (IE la trung tuyến của tam giác vuông ABE)
=>góc IEB=góc IBE; Cmtt ta có góc FDE = góc FED
mà (góc IBE+ góc FDE)= 90 nên (góc IEB+góc FED)=90
=> F,E,I thẳng hàng
Ta có BINF là hình bình hành nên FN=BI=IA => IANF la hbh
=> AN=IF=IE+EF=IB+DF=FN+DF=DN (đpcm)
a: Xét (O) có
ΔACB nội tiếp
AB là đường kính
Do đó: ΔACB vuông tại C
=>\(BC=\sqrt{AB^2-AC^2}=R\sqrt{3}\)
b: Ta có: ΔOAC cân tại O
mà OD là đường cao
nên OD là tia phân giác của góc COA
Xét ΔOCD và ΔOAD có
OC=OA
\(\widehat{COD}=\widehat{AOD}\)
OD chung
Do đó: ΔOCD=ΔOAD
Suy ra: \(\widehat{OCD}=\widehat{OAD}=90^0\)
hay AD là tiếp tuyến của (O)
a: Xét (O) có
CM,CA là các tiếp tuyến
nen CM=CA và OC là phân giác của góc MOA(1)
mà OM=OA
nên OC vuông góc với MA tại trung điểm của MA
Xét (O) có
DM,DB là các tiếp tuyến
nên DM=DB và OD là phân giác của góc MOB(2)
mà OM=OB
nên OD vuông góc với MB tại trung điểm của MB
Từ (1)và (2) suy ra góc COD=1/2*180=90 độ
=>O nằm trên đường tròn đường kính DC
b: Xét tứ giác MIOK có
góc MIO=góc IOK=góc MKO=90 độ
nên MIOK là hình chữ nhật
=>MO=IK
c: Xét hình thang ABDC có
O,O' lần lượt là trung điểm của AB,CD
nên OO' là đường trung bình
=>OO' vuông góc với AB
=>AB là tiếp tuyến của (O')