K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(S_{q\left(OAC\right)}=\dfrac{pi\cdot R^2\cdot90}{360}=pi\cdot\dfrac{R^2}{4}\)

\(S_{OAC}=\dfrac{1}{2}\cdot OA\cdot OC=\dfrac{1}{2}\cdot R^2\)

=>\(S_{vp}=pi\cdot\dfrac{R^2}{4}-\dfrac{1}{2}\cdot R^2\)

b: SỬa đề: AM cắt OC tại I

góc AMB=1/2*180=90 độ

góc IOB+gócIMB=180 độ

=>IOBM nội tiếp

 

BÀI 1 cho tam giác ABC vuông tại A .Nữa đường tròn đường kính AB cắt BC tại D.Trên cung AD lấy một điểm E .Nối BE và kéo dài AC tại F.Chứng minh tứ giác CDEF nội tiếp BÀI 2: Cho đường tròn tâm O đường kính AB cố định ,CD là đường kính thay đổi của đường tròn (O) ( khác AB ) .Tiếp tuyến tại B của (O ) cắt AC và AD lần lượt tại N và M .Chứng minh tứ giác CDMN nội tiếp BÀI 3 :Cho hai...
Đọc tiếp

BÀI 1 cho tam giác ABC vuông tại A .Nữa đường tròn đường kính AB cắt BC tại D.Trên cung AD lấy một điểm E .Nối BE và kéo dài AC tại F.Chứng minh tứ giác CDEF nội tiếp 

BÀI 2: Cho đường tròn tâm O đường kính AB cố định ,CD là đường kính thay đổi của đường tròn (O) ( khác AB ) .Tiếp tuyến tại B của (O ) cắt AC và AD lần lượt tại N và M .Chứng minh tứ giác CDMN nội tiếp 

BÀI 3 :Cho hai đoạn thẳng MN và PQ cắt nhau tại O .Biết OM.ON= PO.OQ.Chứng minh tứ giác MNPQ nội tiếp 

BÀI 4: Cho tam giác ABC có đường cao AH . Gọi M, N lần lượt là hình chiếu vuông góc của H lên các cạnh AB, AC 
a) c/m AMHN nội tiếp
b) BMNC nội tiếp 

BÀI 5: Cho tam giác ABC các đường phân giác trong là BE và CF cắt nhau tại M và các đường phân giác ngoài của các góc B và góc C cắt nhau tại N .chứng minh BMCN nội tiếp

BÀI 6: Cho đường tròn (O) đường kính AB .Gọi M là một điểm trên tiếp tuyến xBy , đường thẳng AM cắt đường tròn (O) tại C , lấy D thuộc BM, nối AD cắt (O) tại I. c/m CIDM nội tiếp

BÀI 7: Cho đường tròn tâm (O) có cung EH và S là điểm chính giữa cung đó .Trên dây EH lấy hai điểm A và B .Các đường thẳng SA và SB cắt đường tròn lần lượt tại D và C .c/m ABCD là tứ giác nội tiếp

BÀI 8: Cho đường tròn (O) đường kính AB , từ A và B vẽ Ax vuông góc AB và By vuông góc BA (Ax và By cùng phía so với bờ AB ) .Vẽ tiếp tuyến x'My' (tiếp điểm M) cắt Ax tại C và By tại D ; OC cắt AM tại I và OD cắt BM tại K .Chứng minh CIKD nội tiếp

0
23 tháng 9 2019

bạn học đến đg tròn rồi à

21 tháng 2 2019

A C D B O I K E F M

a) Ta có: CD là tiếp tuyến của (O) tại M (gt)

=> CM \(\perp\)MO => \(\widehat{CMO}=90^o\)

AC là tiếp tuyến của (O) tại A (gt)

=> \(AC\perp AO\Rightarrow\widehat{CAO}=90^o\)

Xét tứ giác OACM có: \(\widehat{CMO}+\widehat{CAO}=90^o+90^o=180^o\)

=> OACM nội tiếp (1)

Chứng minh Tương tự : OBDM nội tiếp (2)

b) M thuộc (O), AB là đường kính

=> \(\widehat{EMF}=\widehat{AMB}=90^o\)( góc chắn nửa đường tròn) (3)

Ta có: \(CO\perp AM\)( tự chứng minh bài toán quen thuộc )

=> \(\widehat{OEM}=90^o\)(4)

Tương tự \(\widehat{OFM}=90^o\)(5)

Từ 3, 4, 5 => Tứ giác OEFM là hình chữ nhật (tứ giác có 3 góc vuông ) (6)

c) Ta có:  \(\widehat{IOK}=\widehat{EOF}=90^o\)( theo 6)

Mặt khác: I là trung điểm OC, tam giác CMO vuông tại M 

=> CM=IC=IO=> tam giác CIM cân => \(\widehat{IMC}=\widehat{MCI}\)

mà \(\widehat{MCI}=\widehat{MCO}=\widehat{MAO}\)( từ 1)

=> \(\widehat{IMC}=\widehat{MAO}\), chứng minh tương tự  \(\widehat{KMD}=\widehat{MBO}\)

=> \(\widehat{IMC}+\widehat{KMD}=\widehat{MAO}+\widehat{MBO}=90^o\)Vì tam giác AMB vuông tại M

=> \(\widehat{IMK}=90^o\)

Xét tứ giác OIMK có: \(\widehat{IMK}+\widehat{IOK}=180^o\)

=> OIMK nội tiếp

d) IK là đường trung bình của tam giác COD =>IK=1/2CD và OH=1/2 OM (Với H là giao điểm OM và IK=> OH vuông IF)

=>  \(S_{\Delta IOK}=\frac{1}{4}S_{\Delta OCD}\)

Tam giác IKM= tam giác IKO (c.c.c)

=> \(S_{\Delta IOK}=S_{\Delta IMK}\)

=> \(S_{IMKO}=S_{\Delta IOK}+S_{\Delta IMK}=\frac{1}{2}S_{\Delta COD}\)

Ta lại có: tam giác COM= tam giác  COA , tam giác MOD=tam giác BOD

=> \(S_{COD}=S_{\Delta COM}+S_{\Delta MOD}=\frac{1}{2}S_{CAMO}+\frac{1}{2}S_{MDBO}=\frac{1}{2}S_{ACDB}\)

=> \(S_{IMKO}=\frac{1}{4}S_{ACDB}=\frac{1}{4}.\frac{1}{2}\left(AC+DB\right).AB\)=10 (cm)vì ACDB là hình thang vuông với đáy AC, DB và đường cao AB