Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tự vẽ hình nha
a) Ta có do cùng chắn cung
Và do AB// MI
Vậy , nên bốn điểm ICMB cùng nằm
Trên đường tròn đường kính OM
(vì 2 điểm B, C cùng nhìn OM dưới 1 góc vuông)
b) Do 2 tam giác đồng dạng FBD và FEC
nên FB. FC =FE. FD.
Và 2 tam giác đồng dạng FBM và FIC
nên FB. FC =FI. FM. So sánh ta có FI.FM =FD.FE
c) Ta có góc PTQ=900 do POIQ là đường kính.
Và 2 tam giác đồng dạng FIQ và FTM có 2 góc đối đỉnh F bằng nhau và
(vì FI.FM = FD.FE = FT.FQ)
Nên mà (I nhìn OM dưới góc 900)
Nên P, T, M thẳng hàng vì PTM=180o
Làm câu b/
\(S_{IBC}=\frac{1}{2}d\left(I;BC\right).BC\) do BC cố định \(\Rightarrow S_{max}\) khi \(d\left(I;BC\right)\) max
Dễ dàng chứng minh MBOIC nội tiếp đường tròn đường kính OM (\(\widehat{BAC}=\widehat{MBC}\) cùng chắn BC, \(\widehat{BAC}=\widehat{MIC}\) đồng vị)
\(\Rightarrow I\) thuộc cung BC của đường tròn đường kính OM
Mà O là điểm chính giữa cung BC
\(\Rightarrow d\left(I;BC\right)\le d\left(O;BC\right)\Rightarrow d\left(I;BC\right)_{max}=d\left(O;BC\right)\)
\(\Rightarrow S_{IBC}=\frac{1}{2}d\left(I;BC\right).BC\) max khi I trùng O hay A là giao điểm thứ 2 của OC và đường tròn hay AC là đường kính
Mình nghĩ \(M\in(O)\) với \(M\neq K\).
a) Ta có tứ giác AKBC nội tiếp nên \(\widehat{AKB}+\widehat{ACB}=180^o\Rightarrow\widehat{AKB}=\widehat{ACE}\). (1)
Tứ giác AMBK nội tiếp nên \(\widehat{AMK}=\widehat{ABK}\) mà \(\widehat{AMK}=\widehat{AEC}(\text{so le trong, KM//EC})\) nên \(\widehat{ABK}=\widehat{AEC}\). (2)
Từ (1), (2) suy ra \(\Delta ABK\sim\Delta AEC(g.g)\).
b) Theo câu a: \(\Delta ABK\sim\Delta AEC\Rightarrow \frac{AK}{AB}=\frac{AC}{AE};\widehat{BAK}=\widehat{EAC}\)
\(\Rightarrow\dfrac{AB}{AE}=\dfrac{AK}{AC};\widehat{BAE}=\widehat{KAC}\Rightarrow\Delta ABE\sim\Delta AKC\left(c.g.c\right)\).
c) Ta có KM // BC nên \(\Delta ABK\sim\Delta AEC\sim\Delta AMF\)
\(\Rightarrow\dfrac{AK}{AF}=\dfrac{AB}{AM}\).
Từ đây dễ suy ra \(\Delta AFK\sim\Delta AMB(c.g.c)\).