K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2018

A B C D E I

Ta có bài toán phụ sau: Nếu \(\frac{a}{b}=\frac{c}{d}\) thì \(\frac{a}{a+b}=\frac{c}{c+d}\)

 Chứng minh:

\(\frac{a}{b}=\frac{c}{d}\Rightarrow ad=bc\Leftrightarrow ac+ad=ac+bc\Leftrightarrow a\left(c+d\right)=c\left(a+b\right)\Rightarrow\frac{a}{a+b}=\frac{c}{c+d}\)

Áp dụng vào bài toán:

Theo t/c đường phân giác trong tam giác, ta có: \(\frac{CD}{AD}=\frac{BC}{AB}\)

\(\Rightarrow\frac{CD}{CD+AD}=\frac{BC}{BC+AB}\Rightarrow\frac{CD}{AC}=\frac{BC}{AB+BC}\Rightarrow CD=\frac{BC.AC}{AB+BC}\)(1)

Tương tự: \(BE=\frac{BC.AB}{BC+AC}\)(2)

Trong tam giác DBC có phân giác CI nên \(\frac{BI}{DI}=\frac{BC}{CD}\Rightarrow\frac{BI}{DI+BI}=\frac{BC}{CD+BC}\)(3)

Thế (1) vào (3), được

\(\Rightarrow\frac{BI}{BD}=\frac{BC}{BC+\frac{BC.AC}{AB+BC}}=\frac{BC}{\frac{BC.\left(AB+AC+BC\right)}{AB+BC}}=\frac{AB+BC}{AB+AC+BC}\)(*)

Lại có: \(\frac{CI}{EI}=\frac{BC}{BE}\Rightarrow\frac{CI}{CE}=\frac{BC}{BC+BE}\)(4)

Thế (2) vào (4) \(\Rightarrow\frac{CI}{CE}=\frac{BC}{BC+\frac{BC.AB}{BC+AC}}=\frac{BC}{\frac{BC\left(AB+AC+BC\right)}{BC+AC}}=\frac{BC+AC}{AB+AC+BC}\)(2*)

Nhân (*) với (2*) \(\Rightarrow\frac{BI.CI}{BD.CE}=\frac{\left(AB+BC\right)\left(BC+AC\right)}{\left(AB+AC+BC\right)^2}\).

Mà \(BD.CE=2.BI.CI\Rightarrow\frac{\left(AB+BC\right)\left(AC+BC\right)}{\left(AB+AC+BC\right)^2}=\frac{1}{2}\)

\(\Rightarrow2.\left(BC^2+AB.BC+AC.AB+AC.BC\right)=AB^2+AC^2+BC^2+2.\left(AB.BC+AC.AB+AC.BC\right)\)\(\Leftrightarrow2BC^2=AB^2+AC^2+BC^2\Leftrightarrow BC^2=AB^2+AC^2\)

Suy ra tam giác ABC vuông tại A (ĐL Pytago đảo). Hay ^BAC = 900 (đpcm).

1 tháng 8 2018

hai doan day xanh va day vang dai tat ca 119mneu cat di 3/5 doan day xanh va 3/7 day vang thi phan con lai cua hai doan day bang nhau tinh chieu dai cua moi doan day ai lam dc giup di

5 tháng 10 2017

Help me, please !!!

3 tháng 12 2017

I’m not sure I understand

5 tháng 7 2021

Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)có :

\(C\ge\frac{4}{1+\left(a+b\right)^2}\ge\frac{4}{1+1}=2\)

Dấu = khi a=b=1/2