Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. a là số tự nhiên chia 5 dư 1
=> a = 5k + 1 ( k thuộc N )
b là số tự nhiên chia 5 dư 4
=> b = 5k + 4 ( k thuộc N )
Ta có ( b - a )( b + a ) = b2 - a2
= ( 5k + 4 )2 - ( 5k + 1 )2
= 25k2 + 40k + 16 - ( 25k2 + 10k + 1 )
= 25k2 + 40k + 16 - 25k2 - 10k - 1
= 30k + 15
= 15( 2k + 1 ) chia hết cho 5 ( đpcm )
2. 2n2( n + 1 ) - 2n( n2 + n - 3 )
= 2n3 + 2n2 - 2n3 - 2n2 + 6n
= 6n chia hết cho 6 ∀ n ∈ Z ( đpcm )
3. n( 3 - 2n ) - ( n - 1 )( 1 + 4n ) - 1
= 3n - 2n2 - ( 4n2 - 3n - 1 ) - 1
= 3n - 2n2 - 4n2 + 3n + 1 - 1
= -6n2 + 6n
= -6n( n - 1 ) chia hết cho 6 ∀ n ∈ Z ( đpcm )
ta có : n(n+5)−(n−3)(n+2)=n^2+5n−(n^2+2n−3n−6)
=n^2+5n−n^2−2n+3n+6=6n+6=6(n+1)⋮6
⇔6(n+1)⇔6(n+1) chia hết cho 6 với mọi n là số nguyên
⇔n(n+5)−(n−3)(n+2) chia hết cho 6 với mọi n là số nguyên
vậy n(n+5)−(n−3)(n+2)chia hết cho 6 với mọi n là số nguyên (đpcm)
n2-m2=(n2-1)-(m2-1)=(n-1)(n+1)-(m-1)(m+1)
vì m là các số nguyên tố >3=>m là các số lẻ
=>m-1 và m+1 là 2 số chẵn liên tiếp
=>(m-1)(m+1) chia hết cho 8
xét m=3q+1=>m-1=3q=>(m-1)(m+1) chia hết cho 3
xét m=3q+2=>m+1=3q+3=3(q+1)=>(m-1)(m+1) chia hết cho 3
=>(m-1)(m+1) chia hết cho 3
vì (3;8)=1=>(m-1)(m+1) chia hết cho 24
vì n là các số nguyên tố >3=>n là các số lẻ
=>n-1 và n+1 là 2 số chẵn liên tiếp
=>(n-1)(n+1) chia hết cho 8
xét n=3k+1=>n-1=3k=>(n-1)(n+1) chia hết cho 3
xét n=3k+2=>n+1=3k+3=3(k+1)=>(n-1)(n+1) chia hết cho 3
=>(n-1)(n+1) chia hết cho 3
vì (3;8)=1=>(n-1)(n+1) chia hết cho 24
=>(n2-1)-(m2-1) chia hết cho 24
=>n2-m2 chia hết cho 24
=>đpcm
ta có : n(n+5)−(n−3)(n+2)=n2+5n−(n2+2n−3n−6)n(n+5)−(n−3)(n+2)=n2+5n−(n2+2n−3n−6)
=n2+5n−n2−2n+3n+6=6n+6=6(n+1)⋮6=n2+5n−n2−2n+3n+6=6n+6=6(n+1)⋮6
⇔6(n+1)⇔6(n+1) chia hết cho 66 với mọi n là số nguyên
⇔n(n+5)−(n−3)(n+2)⇔n(n+5)−(n−3)(n+2) chia hết cho 66 với mọi n là số nguyên
vậy n(n+5)−(n−3)(n+2)n(n+5)−(n−3)(n+2) chia hết cho 66 với mọi n là số nguyên (đpcm)
n3-n=n(n2-1)=n(n-1)(n+1)
Do n;n+1;n-1 là 3 số nguyên liên tiếp nên trong đó tồn tại 1 số chia hết chio 2 và 1 số chia hết cho 3
=>n(n-1)(n+1) chia hết cho 6
\(n^3-n=n\left(n^2-1\right)\)
\(=n\left(n-1\right)\left(n+1\right)=\left(n-1\right).n.\left(n+1\right)\)
Ta thấy n-1;n;n+1 là ba số tự nhiên liên tiếp
Mà tích của ba số tự nhiên liên tiếp luôn chia hết cho 6
Nên \(n^3-n\) luôn chia hết cho 6.
Tham khảo, chúc bạn học thật giỏi!
\(n^3-n\)
\(=n\left(n^2-1\right)\)
\(=n\left(n+1\right)\left(n-1\right)\)
\(=\left(n-1\right)n\left(n+1\right)\)
Dễ thấy: \(n-1;n;n+1\) là 3 số tự nhiên liên tiếp thì chia hết cho 6
Ta có đpcm