K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2015

vào câu hỏi tương tự bạn nhé

4 tháng 12 2015

Bạn vào câu hỏi tương tự nhé Tên bạn là gì

30 tháng 10 2015

OFO1 tự hỏi rồi cop mạng tự trả lời à ?      

30 tháng 10 2015

*Voi n=3k+1(dk cua k) 
=>n^2-1=(3k+1)^2-1=9k^2+6k+1-1=9k^2+6k 
=3(3k^2+2k) chia het cho 3 
ma n^2-1>3 voi n>2;n ko chia het cho 3 
=>n^2-1 la hop so tai n chia 3 du 1(n>2) 
*Voi n=3p+2(dk cua p) 
=>n^2-1=(3p+2)^2-1=9p^2+12p+4-1 
=9p^2+12p+3 
=3(3p^2+4p+1) chia het cho 3 
ma n^2-1>3 voi n>2;n ko chia het cho 3 
=>n^2-1 la hop so tai n chia 3 du 2(n>2) 
=>n^2-1 la hop so voi moi n >2;n ko chia het cho 3 
=>n^2-1 và n^2+1 ko thể đồng thời là 
số nguyên tố voi n>2;n ko chia hết cho 3

 

 +/n ko chia het cho3 
*Voi n=3k+1(dk cua k) 
=>n^2-1=(3k+1)^2-1=9k^2+6k+1-1=9k^2+6k 
=3(3k^2+2k) chia het cho 3 
ma n^2-1>3 voi n>2;n ko chia het cho 3 
=>n^2-1 la hop so tai n chia 3 du 1(n>2) 
*Voi n=3p+2(dk cua p) 
=>n^2-1=(3p+2)^2-1=9p^2+12p+4-1 
=9p^2+12p+3 
=3(3p^2+4p+1) chia het cho 3 
ma n^2-1>3 voi n>2;n ko chia het cho 3 
=>n^2-1 la hop so tai n chia 3 du 2(n>2) 
=>n^2-1 la hop so voi moi n >2;n ko chia het cho 3 
=>n^2-1 và n^2+1 ko thể đồng thời là 
số nguyên tố voi n>2;n ko chia hết cho 3

2 tháng 11 2016

Giả sử:,

+) \(n\) chia \(3\)\(1\) thì \(n^2\) cũng chia \(3\)\(1\), khi đó \(n^2-1\) chia \(3\)\(0\) nên không là số nguyên tố.

+) \(n\) chia \(3\)\(2\) thì \(n^2\) cũng chia \(3\)\(1\), khi đó \(n^2-1\) chia \(3\)\(00\) nên không là số nguyên tố
Vậy ta có đpcm :)

28 tháng 1 2020

Bài giải

Ta có: n2 - 1 và n2 + 1 (n không chia hết cho 3, n > 2, n \(\in\)N gì đó)

Xét n:

Vì n không chia hết cho 3

Suy ra n2 chia 3 dư 1

Xét ba số tự nhiên liên tiếp: n2 - 1; n2; n2 + 1

Vì n2 chia 3 dư 1

Nên n2 - 1 \(⋮\)3

Suy ra n2 - 1 là hợp số

Vậy...

29 tháng 1 2020

\(n\) lớn hơn 2 và ko chia hết cho 3 nên \(n\) tồn tại dưới 2 dạng là 3k+1 hoặc 3k+2.
Nếu \(n\) có dạng 3k + 2
n2 + 1 = ( 3k + 2 )2 + 1 = 9k2 + 12k + 5
n2 - 1 = 9k2 + 12k + 3 chia hết cho 3
=> Ko thể đồng thời là số nguyên tố
Nếu n có dạng 3k + 1
n2 + 1= ( 3k + 1 )2 + 1 = 9k2 + 6k + 2
n2 - 1= ( 3k + 1 )2 - 1 = 9k2+ 6k chia hết cho 3
=> Ko thể đồng thời là số nguyên tố
Vậy với n thuộc N , n > 2 và ko chia hết cho 3 thì n2 + 1 và n2- 1 ko thể đồng thời là số nguyên tố.

Chúc học tốt!!!