K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2020

Ta có:

\(46^n+296.13^n\\ =46^n-13^n+297.13^n\\ =\left(46-13\right).X+9.33.13^n\\ =33.\left(X+9.13^n\right)⋮33\left(1\right)\)

Lại có:

\(46^n+296.13^n\\ =46^n+13^n+295.13^n\\ =\left(46+13\right).Y+59.5.13^n\\ =59.\left(Y+5.13^n\right)⋮59\left(2\right)\)

Mà 59 và 33 là 2 số nguyên tố cùng nhau (3)

Từ (1);2 và (3)\(\Rightarrow\)biểu thức trên chia hết cho:59.33=1947 (đpcm)

28 tháng 4 2020

Bài 3 : 

Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\Rightarrow\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\)

Ta có : 

\(\frac{x}{x+1}=\frac{x}{x+x+y+z}=\frac{x}{\left(x+y\right)+\left(x+z\right)}\)

\(\le\frac{1}{4}\left(\frac{x}{x+y}+\frac{x}{x+z}\right)\)

Tương tự ta có:

\(\frac{y}{y+1}\le\frac{1}{4}\left(\frac{y}{x+y}+\frac{y}{y+z}\right)\)

\(\frac{z}{z+1}\le\frac{1}{4}\left(\frac{z}{x+z}+\frac{z}{y+z}\right)\)

\(\Rightarrow\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\le\frac{1}{4}\left(\frac{x}{x+y}+\frac{x}{x+z}\right)\)

\(+\frac{1}{4}\left(\frac{y}{x+y}+\frac{y}{y+z}\right)+\frac{1}{4}\left(\frac{z}{x+z}+\frac{z}{y+z}\right)\)

\(\Rightarrow\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\le\frac{1}{4}\left(\frac{x}{x+y}+\frac{x}{x+z}+\frac{y}{x+y}+\frac{y}{y+z}+\frac{z}{x+z}+\frac{z}{y+z}\right)\)

\(\Rightarrow\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\le\frac{1}{4}.6=\frac{3}{2}\)

24 tháng 7 2019

C1: Ta có: 49 chia 3 dư 1

=> 49^n chia 3 dư 1

13 chia 3 dư 1 

=> 13^n chia 3 dư 1

269 chia 3 dư 2

=>  \(49^n+296.13^n\)chia 3 dư 1+2.1=3  

=> \(49^n+296.13^n\)chia hết cho 3

C2: Hoặc bạn có thể làm theo cách đồng dư

\(49\equiv1\left(mod3\right)\)

=> \(49^n\equiv1^n\equiv1\left(mod3\right)\)

\(13\equiv1\left(mod3\right)\)

=> \(13^n\equiv1^n\equiv1\left(mod3\right)\)

\(296\equiv2\left(mod3\right)\)

=> \(49^n+296.13^n\equiv1+2.1\equiv3\equiv0\left(mod3\right)\)

=> \(49^n+296.13^n\)chia hết cho 3

24 tháng 7 2019

Thêm đk n thuộc N*. Quy nạp thử xem nào:) (em ko chắc đâu nhá)

Với n = 1 thì nó đúng

Giả sử nó đúng với n = k tức là \(49^k+296.13^k⋮3\)

Ta chứng minh nó đúng với n = k + 1. Cần chứng minh \(49^k.49+296.13^k.13⋮3\)

\(\Leftrightarrow49\left(49^k+296.13^k\right)-296.13^k.36⋮3\)

Điều này hiển nhiên đúng do giả thiết quy nạp và \(296.13^k.36\) chia hết cho 3

1 tháng 6 2023

Phân tích: m12-m8-m4+1=(m2+1)2(m4+1)(m2-1)2