K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 1 2016

Vì n là số tự nhiên có 2 chữ số

=> 9 < n < 100

=> 18 < 2n < 200

=> 2n thuộc {36; 64; 100; 144; 196} (Vì 2n là số chính phương chẵn)

+ 2n = 36 => n = 18 => n + 4 = 22 (loại)

+ 2n = 64 => n = 32 => n + 4 = 36 (là scp chọn)

Các trường hợp khác xét tương tự

25 tháng 11 2017

Tổng 3 số bằng 74.Số thứ 2 tỉ lệ với 5,6 số thứ 2 và số thứ 3 tỉ lệ với 4,5.Tìm mỗi số

Viết dấu đi,chẳng hiểu cái gì!

4 tháng 2 2018

Gọi 2n+1=a2   ; 3n+1=b2   (a,b thuộc N, \(10\le n\le99\))

\(10\le n\le99\Rightarrow21\le2n+1\le199\)

\(\Rightarrow21\le a^2\le199\)

Mà 2n+1 lẻ

\(\Rightarrow2n+1=a^2\in\left\{25;49;81;121;169\right\}\)

\(\Rightarrow n\in\left\{25;49;81;121;169\right\}\)

\(\Rightarrow3n+1\in\left\{37;73;121;181;253\right\}\)

Mà 3n+1 là số chính phương

\(\Rightarrow3n+1=121\Rightarrow n=40\)

Vậy n=40

4 tháng 2 2018

10 ≤ n ≤ 99 ↔ 21 ≤ 2n+1 ≤ 201

2n+1 là số chính phương lẻ nên

2n+1∈ {25;49;81;121;169}

↔ n ∈{12;24;40;60;84}

↔ 3n+1∈{37;73;121;181;253}

↔ n=40 

Vậy n=40 thoả mãn đề bài

11 tháng 10 2016

a) \(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^n}\)

\(3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{n-1}}\)

\(3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{n-1}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^n}\right)\)

\(2A=1-\frac{1}{3^n}\)

\(A=\frac{1-\frac{1}{3^n}}{2}\)

b) Gọi số cần tìm là ab (a khác 0; a,b là các chữ số)

Ta có: ab.75 = x2 \(\left(x\ne0\right)\)

=> ab.3.52 = x2

Để ab.75 là 1 số chính phương thì ab = 3.k2 \(\left(k\ne0\right)\)

Lại có: 9 < ab < 100 => 9 < 3.k2 < 100

=> 3 < k2 < 34

Mà k2 là số chính phương nên \(k^2\in\left\{4;9;16;25\right\}\)

\(\Rightarrow ab\in\left\{12;27;48;75\right\}\)

Vậy số cần tim là 12; 27; 48; 75

c) Đặt \(B=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{101}{3^{101}}\)

\(3B=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{101}{3^{100}}\)

\(3B-B=\left(1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{101}{3^{100}}\right)-\left(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{101}{3^{101}}\right)\)

\(2B=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}-\frac{101}{3^{101}}\)

\(6B=3+1+\frac{1}{3}+...+\frac{1}{3^{99}}-\frac{101}{3^{100}}\)

\(6B-2B=\left(3+1+\frac{1}{3}+...+\frac{1}{3^{99}}-\frac{101}{3^{100}}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}-\frac{101}{3^{101}}\right)\)

\(4B=3-\frac{101}{3^{100}}-\frac{1}{3^{100}}+\frac{101}{3^{101}}\)

\(4B=3-\frac{303}{3^{101}}-\frac{3}{3^{101}}+\frac{101}{3^{101}}\)

\(4B=3-\frac{205}{3^{101}}< 3\)

\(\Rightarrow B< \frac{3}{4}\)

11 tháng 10 2016

Minh bo sung cau c la tong do be hon 3/4

17 tháng 12 2016

Theo đề ta có:\(a=n^2=153k,1000\le n^2\le9999\)

\(\Leftrightarrow1000\le153k\le9999\)

\(\Rightarrow\frac{1000}{153}\le\frac{153k}{153}\le\frac{9999}{153}\approx6,5\le k\le65,3\)

Thử k= 7;8;9;...;65. Ta thấy: 153.17=\(51^2=2601\)

Vậy số chính phương có 4 chữ số chia hết cho 153 la 2601

3 tháng 2 2017

Ta thấy tổng của 3 chữ số liên tiếp bắt đầu từ số chẵn thì luôn luôn có các chữ số tận cùng là 1;3;5;7;9 (số lẻ) mà tổng này lại chia hết cho 5 nên suy ra chữ số hàng đơn vị là 5.

Khi đã có chữ số hàng đơn vị thì ta có thể suy ra tiếp chữ số hàng trăm sẽ là chữ số 4 để tổng của 5 và 4 chia hết cho 9.

Ta thấy chữ số hàng chục là số chẵn nhưng tổng ở đây là 3 chữ số liên tiếp nên khi tổng trừ 3 thì phải chia hết cho 3 nhằm để tìm số bé. Như vậy ta dùng phương pháp loại trừ ta thực hiện phép tính sau:

(4a5 - 3 ) chia hết cho 3

Ta thấy được chữ số 0 và chữ và chữ số 6 có thể thay thế vào a. Ta có 2 dãy số tự nhiên liên tiếp là:

Dãy 1 : 134;135;136

Dãy 2 : 154;155;156

Nhưng để thoả mãn điều kiện của đề bài là phải có 1 số trong dãy chia hết cho 9 vì vậy ta sẽ có dãy số đúng là dãy 1 vì số 135 chia hết cho 9.

1 tháng 2 2017

bài nào vậyok