Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì n là số nguyên tố lớn hơn 3 nên n2 chia cho 3 dư 1.
=> n2
có dạng 3k+1
=>n2+2006=3k+1+2006=3k+2007
Vì 3k chia hết cho 3
2007 chia hết cho 3
=> 3k+1+2006 chia hết cho 3
=>n2+2006 chia hết cho 3 nên nó là hợp số
Vì n là số nguyên tố lớn hơn 3 nên n2 chia cho 3 dư 1.
=> n2 có dạng 3k+1
=>n2+2006=3k+1+2006=3k+2007
Vì 3k chia hết cho 3
2007 chia hết cho 3
=> 3k+1+2006 chia hết cho 3
=>n2+2006 chia hết cho 3 nên nó là hợp số
n là số nguyên tố lớn hơn 3 nên không chia hết cho 3 .
Vậy n2 chia cho 3 dư 1 tức là n2 = 3k + 1
Do đó n2 + 2006 = 3k + 1 + 2006 = 3k + 2007 chia hết cho 3 .
Vậy n2 + 2006 là hợp số .
Vì 2006 là hợp số, mà n là số nguyên tố lớn hơn 3 nên n là số lẻ>3, mà số lẻ2=số lẻ
=>2006+số lẻ=số lẻ là số nguyên tố
mk cũng k chắc về bài này lắm
ta sẽ có số thay : 5;7;11
Từ đó ta có: +5^2+2006=10+2006=2016 => là hợp số
+7^2+2006=14+2006=2020=>là hợp số
+11^2+2006=22+2006=2028=>là hợp số
Từ 3 ví dụ trên ta tháy nếu n là số nguyên tố >3 thì n^2 +2006 là hợp số
vì n là số nguên tố lớn hơn 3
suy ra n chia 3 dư 1 và chia 3 dư 2
suy ra n^2 chia 3 dư 1
mà 2006 chia 3 dư 2
suy ra n^2+2006=3k+1+668*3+2
suy ra 3(k+669) chia hết cho 3
suy ra n^2+2006 là hợp số
HOẶC BẠN CÓ THỂ LÀM THEO CÁCH ĐỒNG DƯ THÌ NHANH HƠN
Vì n là số nguyên tố lớn hơn 3 nên n2 chia cho 3 dư 1.
=> n2 có dạng 3k+1
=>n2+2006=3k+1+2006=3k+2007
Vì 3k chia hết cho 3
2007 chia hết cho 3
=> 3k+1+2006 chia hết cho 3
=>n2+2006 chia hết cho 3 nên nó là hợp số
Số nguyên tố lớn hơn 3 có dạng 3k + 1 hoặc 3k + 2 (k \(\in\) N)
Với n = 3k + 1 thì n2 + 2006 = (3k + 1)2 + 2006 = 9k2 + 1 + 2006 = 9k2 + 2007 = 9.(k2 + 223) chia hết cho 9, là hợp số.
Với n = 3k + 2 thì n2 + 2006 = (3k + 2)2 + 2006 = 9k2 + 4 + 2006 = 9k2 + 2010 = 3.(3k2 + 670) chia hết cho 3, là hợ số.
Vậy n2 + 2006 là hợp số.
a.Đặt n2+2006=a2(a\(\in\)Z)
=>2006=a2-n2=(a-n)(a+n) (1)
Mà (a+n)-(a-n)=2n chia hết cho 2
=>a+n và a-n có cùng tính chẵn lẻ
+ TH1:a+n và a-n cùng lẻ => (a-n)(a+n) lẻ, trái với (1)
+ TH2 :a+n và a-n cùng chẵn => (a-n)(a+n) chia hết cho 4, trái với (1)
Vậy không có n thỏa mãn n2+2006 là số chính phương
b.Vì n là số nguyên tố lớn hơn 3 => n không chia hết cho 3
=> n=3k+1 hoặc n=3k+2 (k\(\in\)N*)
+ n=3k+1 thì n2+2006=(3k+1)2+2006=9k2+6k+2007 chia hết cho 3 và lớn hơn 3
=>n2+2006 là hợp số
+ n=3k+2 thì n2+2006=(3k+2)2+2006=9k2+12k+2010 chia hết cho 3 và lớn hơn 3
=>n2+2006 là hợp số
Vậy n2+2006 là hợp số
http://hocmai.vn/file.php/389/Bai_tap_tu_luyen/De_thi_HSG/Dap_an_De_thi_HSG_lop_6_so_1.pdf Mình tặng bạn nhé!! ^^
http://hocmai.vn/file.php/389/Bai_tap_tu_luyen/De_thi_HSG/Dap_an_De_thi_HSG_lop_6_so_1.pdf
đặt n^2+2006=a^2
=>2006=a^2-n^2
=>2006=(a-n)(a+n)
vì tích của a-n và a+n là 1 số chẵn nên trong 2 số sẽ có ít nhất 1 số chẵn (1)
mặt khác: a-n+(a+n)=2a là 1 số chẵn=> a-n và a+n phải cùng tính chẵn lẻ(2)
từ (1) và(2) suy ra a-n và a+n là 2 số chẵn
đặt a-n=2x;a+n=2y(x,y thuộc Z)
=>(a-n)(a+n)=2x.2y
=>2x.2y=2006
=>4xy=2006
vì x,y là số nguyên nên 2006 phải chia hết cho 4(vô lí, vì 2006 ko chia hết cho 4)
vậy ko tồn tại số nguyên n để n^2+2006 là 1 số chính phương
2/ vì n là số nguyên tố lơn hơn 3 nên n ko chia hết cho 3=>n có dạng 3k+1;3k+2
+) nếu n=3k+1
=>n^2+2006=(3k+1)^2+2006=9k^2+6k+2007 chia hết cho 3 và n^2+2006 lớn hơn 3=>n^2+2006 là hợp số
+)nếu n=3k+2
=>n^2+2006=(3k+2)^2+2006=9k^2+12k+2010 chia hết cho 3 và n^2+2006 lớn hơn 3=>n^2+2006 là hợp số
vậy n^2+2006 là hợp số với n>3
tick nha
a) vì n là số nt > 3 nên n là số lẻ
=> n2 là số lẻ => n2 là hợp số (1)
mà 2006 > 2 => 2006 là hơp số (2)
=> n2+ 2006 là hợp số
KL: n2 +2006 là hợp số