K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2020

Bài làm:

Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\frac{ab+bc+ca}{abc}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\left(ab+bc+ca\right)\left(a+b+c\right)=abc\)

\(\Leftrightarrow a^2b+ab^2+a^2c+ac^2+b^2c+bc^2+3abc-abc=0\)

\(\Leftrightarrow ab\left(a+b\right)+c\left(a^2+2ab+b^2\right)+c^2\left(a+b\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(ab+bc+ca+c^2\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

=> a+b=0 hoặc b+c=0 hoặc c+a=0

=> a=-b hoặc b=-c hoặc c=-a

=> Sẽ phải luôn tồn tại 2 trong 3 số a,b,c đối nhau

Ko mất tổng quát, g/s a=-b

=> \(\frac{1}{a^n}+\frac{1}{b^n}+\frac{1}{c^n}=-\frac{1}{b^n}+\frac{1}{b^n}+\frac{1}{c^n}=\frac{1}{c^n}\) (vì n lẻ)

Và \(\frac{1}{\left(a+b+c\right)^n}=\frac{1}{\left(-b+b+c\right)^n}=\frac{1}{c^n}\)

=> \(\frac{1}{a^n}+\frac{1}{b^n}+\frac{1}{c^n}=\frac{1}{\left(a+b+c\right)^n}\)

1 tháng 8 2018

I. Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

15 tháng 11 2016

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Rightarrow\frac{1}{a+b+c}=\frac{bc+ca+ab}{abc}\)

\(\Rightarrow\left(a+b+c\right)\left(bc+ca+ab\right)=abc\)

\(\Rightarrow abc+a^2c+a^2b+b^2c+abc+ab^2+bc^2+ac^2+abc=abc\)

\(\Rightarrow2abc+a^2c+a^2b+b^2c+ab^2+bc^2+ac^2=0\)

\(\Rightarrow\left(abc+a^2b\right)+\left(ac^2+a^2c\right)+\left(b^2c+b^2a\right)+\left(bc^2+abc\right)=0\)

\(\Rightarrow ab\left(a+c\right)+ac\left(a+c\right)+b^2\left(a+c\right)+bc\left(a+c\right)=0\)

\(\Rightarrow\left(ab+ac+b^2+bc\right)\left(a+c\right)=0\)

\(\Rightarrow\left[\left(ab+ac\right)+\left(b^2+bc\right)\right]\left(a+c\right)=0\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)

Do đó trong a , b , c luôn có 2 số đối nhau.

Phần 2 : Do vai trò a , b , c như nhau nên coi \(a=-b\)( Do có 2 số đối nhau)

\(\Rightarrow a^n=-b^n\)(Vì n lẻ )

\(\Rightarrow\frac{1}{a^n}+\frac{1}{b^n}+\frac{1}{c^n}=\frac{a^n+b^n}{a^n.b^n}+\frac{1}{c^n}=0+\frac{1}{c^n}=\frac{1}{c^n}\)

\(\frac{1}{a^n+b^n+c^n}=\frac{1}{\left(a^n+b^n\right)+c^n}=\frac{1}{0+c^n}=\frac{1}{c^n}\)

\(\Rightarrow\frac{1}{a^n}+\frac{1}{b^n}+\frac{1}{c^n}=\frac{1}{a^n+b^n+c^n}\)

Vậy ...

AH
Akai Haruma
Giáo viên
31 tháng 1 2018

Lời giải:

Ta có:

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Leftrightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{a+b+c}=0\)

\(\Leftrightarrow \frac{a+b}{ab}+\frac{a+b}{c(a+b+c)}=0\)

\(\Leftrightarrow (a+b)\left(\frac{1}{ab}+\frac{1}{c(a+b+c)}\right)=0\)

\(\Leftrightarrow \frac{(a+b)[c(a+b+c)+ab]}{abc(a+b+c)}=0\)

\(\Leftrightarrow (a+b)(b+c)(c+a)=0\)

Xét : \(A=\frac{1}{a^n}+\frac{1}{b^n}+\frac{1}{c^n}-\frac{1}{a^n+b^n+c^n}\)

\(A=\frac{a^n+b^n}{a^nb^n}+\frac{a^n+b^n}{c^n(a^n+b^n+c^n)}\)

\(A=(a^n+b^n)\left(\frac{1}{a^nb^n}+\frac{1}{c^n(a^n+b^n+c^n)}\right)\)

\(A=\frac{(a^n+b^n)[c^n(a^n+b^n+c^n)+a^nb^n]}{a^nb^nc^n(a^n+b^n+c^n)}\)

\(A=\frac{(a^n+b^n)(b^n+c^n)(c^n+a^n)}{a^nb^nc^n(a^n+b^n+c^n)}\)

Vì $n$ lẻ nên :

\((a^n+b^n)(b^n+c^n)(c^n+a^n)=(a+b)(b+c)(c+a)(a^{n-1}+....+b^{n-1})(b^{n-1}+..+c^{n-1})(c^{n-1}+...+a^{n-1})\)

\(=0\) do \((a+b)(b+c)(c+a)=0\)

Do đó: \(A=0\Leftrightarrow \frac{1}{a^n}+\frac{1}{b^n}+\frac{1}{c^n}=\frac{1}{a^n+b^n+c^n}\)

18 tháng 3 2019

\(\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\)

\(\Leftrightarrow\frac{a+b}{ab}=\frac{a+b}{-\left(a+b+c\right).c}\)

TH1:a+b=0

=> a=-b

\(\frac{1}{a^n}+\frac{1}{b^n}+\frac{1}{c^n}=\frac{1}{\left(-b\right)^n}+\frac{1}{b^n}+\frac{1}{c^n}=\frac{1}{c^n}\)(vì n lẻ nên (-b)n âm)

\(\frac{1}{a^n+b^n+c^n}=\frac{1}{\left(-b\right)^n+b^n+c^n}=\frac{1}{c^n}\)

TH2: ab=-(a+b+c)

=> ab=-ac-bc-c2 => ab+ac=-bc-c2=> a.(b+c)=-b.(b+c)

\(\Rightarrow\orbr{\begin{cases}a=-b\\b=-c\end{cases}}\)c/m tương tự trường hợp 1 :))

18 tháng 3 2019

>: nhầm

dòng 8: a.(b+c)=-c.(b+c) =>... 

24 tháng 2 2017

kb với mk đi mk giải cho

14 tháng 1 2017

Ta có \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}\right)+\left(\frac{1}{c}-\frac{1}{a+b+c}\right)=0\)

\(\Leftrightarrow\frac{a+b}{ab}+\frac{a+b+c-c}{\left(a+b+c\right)c}=0\Leftrightarrow\left(a+b\right)\left(\frac{1}{ab}+\frac{1}{\left(a+b+c\right)c}\right)=0\)

\(\left(\frac{1}{ab}+\frac{1}{\left(a+b+c\right)c}\right)\ne0\)với mọi a,b,c

\(\Rightarrow\)a+b=0\(\Leftrightarrow\)a=-b là hai số đối nhau (1)

từ đó được \(a^n=-b^n\)với mọi n lẻ.

Khi đó \(\frac{1}{a^n}+\frac{1}{b^n}+\frac{1}{c^n}=\frac{1}{a^n+b^n+c^n}\Leftrightarrow\frac{1}{c^n}=\frac{1}{c^n}\)luôn đúng (2)

Từ (1)và(2) ta được đpcm

14 tháng 11 2016

sao bn toàn cây khó thế?

 

15 tháng 11 2016

làm đề tỉnh mà .Sắp thi rồi nên