K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 1 2018

chứng minh bài này bằng phản chứng

phân tích thành nhân tử giả sử biểu thức đề bài cho là một số chính phương ta được

\(\left(n+1\right)^2n^2\left[\left(n-1\right)^2+1\right]=y^2\)

muốn pt trên đúng thi \(\left(n-1\right)^2+1\)cũng là một số chính phương. mà tổng của một số chính phương và 1 là một số chính phương khi và chỉ khi số chính phương đó là 0

mà với n>1 =>n-1>0=>mâu thuẫn

8 tháng 1 2024

Phân tích thành nhân tử giả sử biểu thức đề bài cho là một số chính phương ta được

(�+1)2�2[(�−1)2+1]=�2(n+1)2n2[(n1)2+1]=y2

Muốn pt trên đúng thi (�−1)2+1(n1)2+1cũng là một số chính phương. mà tổng của một số chính phương và 1 là một số chính phương khi và chỉ khi số chính phương đó là 0

Mà với n>1 =>n-1>0=>mâu thuan

30 tháng 7 2016

\(a=n^2\left(n^4-n^2+2n+2\right)\)

A=\(n^2\left(n+1\right)\left(n^3-n^2+2\right)\)

A=\(n^2\left(n+1\right)\left(n^3+1-n^2+1\right)\)

A=\(n^2\left(n+1\right)^2\left(n^2-2n+2\right)\)

A=\(n^2\left(n+1\right)^2\left(n-1\right)+n^2\left(n+1\right)^2\)

nhận thấy n^2 -2n+2=\(\left(n-1\right)^2+1>\left(n-1\right)^2\)(1) (vì n>1)

vì n>1 => 2n>2

=>2n-2>0

=>\(n^2-\left(2n-2\right)< n^2\)

hay \(n^2-2n+2< n^2\)(2)

từ (1) và (2) =>\(\left(n-1\right)^2< n^2-2n+2< n^2\)

=>\(n^2-2n+2\)không là số chính phương

=> A= \(n^2\left(n+1\right)^2\left(n^2-2n+2\right)\) không là số chính phương

mình làm tắt chỗ nào không hiểu hỏi mình trả lời cho

30 tháng 1 2015

Quên cách làm thôi bn .. nếu bn bk thì giải ra đi 
Ở đây là chỗ có thể đặt câu hỏi cũng như trả lời mak

 

7 tháng 8 2018

Hãy tích cho tui đi

vì câu này dễ mặc dù tui ko biết làm 

Yên tâm khi bạn tích cho tui

Tui sẽ ko tích lại bạn đâu

THANKS

8 tháng 1 2017

\(A=n^2\left(n^4-n^2+2n+2\right)=n^2\left(n^2+2n+1\right)\left(n^2-2n+2\right)\)

\(A=n^2.\left(n+1\right)^2.\left[\left(n-1\right)^2+1\right]\) có \(\left(n-1\right)^2+1\) chỉ là số CP phương khi n=1

Vậy với n>1 A không thể Cp

3 tháng 4 2020

1. Câu hỏi của Đình Hiếu - Toán lớp 7 - Học toán với OnlineMath