K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 5 2017

+)Vì n là 1 số tự nhiên lẻ
=) \(24^n\)có chữ số tận cùng là 24
=) \(24^n+1\)có chữ số tận cùng là 25\(⋮25\)( Vì số chia hết 25 là số có chữ số tận cùng là 25 ) \(\left(1\right)\)
+) Vì \(24:23\left(dư1\right)\)=) \(24^n:23\left(dư1\right)\)=) \(24^n+1:23\left(dư2\right)\)
=) \(24^n+1\)không chia hết 23 \(\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\)=) \(24^n+1⋮25\)nhưng không chia hết cho 23 (với n là 1 số tự nhiên lẻ)

29 tháng 5 2017

vì N là 1 số tự nhiên lẻ

\(\Rightarrow24^n\)có chử số tận cùng là 24

\(\Rightarrow24^n+1\) có chữ số tận cùng là\(25⋮25\)

bởi vì 24:23 dư 1 = \(24^n\div23\left(d\text{ư1}\right)\Rightarrow24+1.23\left(d\text{ư2}\right)\)

16 tháng 8 2017

+ta có n là số tự nhiên lẻ =>24^n có chữ số tận cùng là 24 (cái này xem kĩ hơn về phần tính chất chia hét của lũy thừa nhé)

=>24^n+1 có chữ số tận cùng là 25 ( vì số chữ số tận cùng nào thì chia hết cho số đó =>25 chia hết 25)
 + ta có 24:23 (có dư là 1) =>24^n :23 (dư 1 )=>24^n+1 :23 (dư 2) => 24^n+1 k chia hết cho 23 

24^n+1=(24+1)*A=25*A chia hết cho 25

29 tháng 7 2016

242+1=(24+1)(24-1)

25.23

25chia het cho 25 

suy ra 25.23 chia hetcho 25

29 tháng 7 2016

ma cho mk hoi n o dau vay

10 tháng 7 2018

ai làm dược bài 1 mình tích cho

2 tháng 9 2018

Bài 1 : a . Sử dụng công thúc sau : a^n - b^n = ( a-b ) ( a^n-1 + a^n-2 . b + .....+ b^n-1 )

=> A = 21^5 - 1 chia hết cho 20 

=> A = 21^10 - 1 chia hết 400

=> A= 21^10 - 1 chia hết cho 200

30 tháng 9 2018

\(n^4-1\)

\(=\left(n^2\right)^2-1^2\)

\(=\left(n^2-1\right)\left(n^2+1\right)\)

\(=\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)

Vì n lẻ \(\Rightarrow\hept{\begin{cases}n-1\text{chẵn}\\n+1\text{chẵn}\\n^2+1\text{chẵn}\Rightarrow n^2+1⋮2\left(1\right)\end{cases}}\)

mặt khác n - 1 và n + 1 là 2 số chẵn liên tiếp \(\Rightarrow\left(n-1\right)\left(n+1\right)⋮4\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮8\left(đpcm\right)\)

30 tháng 9 2018

Phân tích thành nhân tử:

\(n^4-1=\left(n^2-1\right)\left(n^2+1\right)=\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)

Vì n là số tự nhiên lẻ nên n = 2k + 1 với k là số tự nhiên

Khi đó:

 \(n^4-1=\left(2k-1+1\right)\left(2k+1+1\right)\left(n^2+1\right)\)

\(=2k\left(2k+2\right)\left(n^2+1\right)\)

\(=2k.2.\left(k+1\right)\left(n^2+1\right)\)

\(=4k\left(k+1\right)\left(n^2+1\right)\)

Vì k(k+1) là tích hay số tự nhiên liên tiếp nên k(k+1) chia hết cho 2  \(\Rightarrow4k\left(k+1\right)⋮8\)

                                                                                                            \(\Rightarrow4k\left(k+1\right)\left(n^2+1\right)⋮8\)

                                                                                                     hay  \(n^4-1⋮8\)(với n là số tự nhiên lẻ)

Ta có điều phải chứng minh.

15 tháng 10 2017

dk 24^N +1 chia het cho 25 va 23