K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Số điểm còn lại là n-3(đường)

TH1: Chọn 1 điểm trong 3 điểm thẳng hàng, chọn 1 điểm trong n-3 điểm còn lại

=>Có \(3\cdot\left(n-3\right)=3n-9\left(đường\right)\)

TH2: Chọn 2 trong n-3 điểm còn lại

=>Có \(C^2_{n-3}=\dfrac{\left(n-3\right)!}{\left(n-3-2\right)!\cdot2!}=\dfrac{\left(n-3\right)\left(n-4\right)}{2}\left(đường\right)\)

TH3: Vẽ 1 đường thẳng đi qua 3 điểm thẳng hàng

=>Có 1 đường

Tổng số đường thẳng vẽ được là:

\(3n-9+1+\dfrac{\left(n-3\right)\left(n-4\right)}{2}=\dfrac{2\left(3n-8\right)+n^2-7n+12}{2}\)

\(=\dfrac{6n-16+n^2-7n+12}{2}=\dfrac{n^2+n-4}{2}\left(đường\right)\)

19 tháng 3 2024

Bạn Giải theo cách của toán 6 đc ko

Câu 1:Cho bốn điểm A, B, X, Y trong đó không có ba điểm nào thẳng hàng. Kẻ các đường thẳng đi qua các cặp điểm. Có tất cả bao nhiêu đường thẳng? Đó là những đường thẳng nào?Câu 2:Cho bốn điểm M, N, C, D trong đó ba điểm M, N, C thẳng hàng còn ba điểm N, C, D không thẳng hàng. Kẻ các đường thẳng đi qua các cặp điểm. Có tất cả bao nhiêu đường thẳng? Đó là những đường thẳng...
Đọc tiếp

Câu 1:Cho bốn điểm A, B, X, Y trong đó không có ba điểm nào thẳng hàng. Kẻ các đường thẳng đi qua các cặp điểm. Có tất cả bao nhiêu đường thẳng? Đó là những đường thẳng nào?

Câu 2:Cho bốn điểm M, N, C, D trong đó ba điểm M, N, C thẳng hàng còn ba điểm N, C, D không thẳng hàng. Kẻ các đường thẳng đi qua các cặp điểm. Có tất cả bao nhiêu đường thẳng? Đó là những đường thẳng nào?

Câu 3:Cho trước 5 điểm trong đó không có ba điểm nào thẳng hàng. Vẽ các đường thẳng đi qua các cặp điểm.

a) Hỏi vẽ được bao nhiêu đường thẳng?

b) Nếu thay 5 điểm bằng n điểm (nN, n 2) thì vẽ được bao nhiêu đường thẳng? 

Câu 4:Cho trước 100 điểm trong đó không có ba điểm nào thẳng hàng. Vẽ các đường thẳng đi qua các cặp điểm. Hỏi có tất cả bao nhiêu đường thẳng?

 

0
6 tháng 2 2017
khó quá
13 tháng 2 2020

Ban tham khảo ở link này nhé, lời giải chi tiết rõ ràng dễ hiểu :

Chuyên đề bồi dưỡng học sinh giỏi toán 6: Phương pháp giải toán 6 nâng cao - Nguyễn Quốc Tuấn - Google Sách