K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(M=\dfrac{x^2\left(x-2\right)}{x-2}+\dfrac{\left(x+1\right)\left(x^2-x+1\right)}{x^2-x+1}=x^2+x+1\)

b: Để M=7 thì (x+3)(x-2)=0

=>x=-3(nhận) hoặc x=2(loại)

Vậy: x=-3

2 tháng 10 2018

Bài 1:

a.\(\left(x+y\right)^2-\left(x-y\right)^2=\left(x+y-x+y\right)\left(x+y+x-y\right)=2\left(x+y\right)\)

b.\(2\left(x+y\right)\left(x-y\right)+\left(x+y\right)^2+\left(x-y\right)^2=\left(x+y+x-y\right)^2=4x^2\)

8 tháng 9 2023

`a,` Với `x=3`

\(B=\dfrac{x^2-x}{2x+1}\\ \Rightarrow\dfrac{3^2-3}{2\cdot3+1}\\ =\dfrac{9-3}{6+1}\\ =\dfrac{6}{7}\)

`b,` Ta có `M=A*B`

\(M=\left(\dfrac{1}{x-1}+\dfrac{x}{x^2-1}\right)\cdot\dfrac{x^2-x}{2x+1}\\ =\left(\dfrac{1}{x-1}+\dfrac{x}{\left(x-1\right)\left(x+1\right)}\right)\cdot\dfrac{x\left(x-1\right)}{2x+\text{ }1}\\ =\left(\dfrac{x+1}{\left(x-1\right)\left(x+1\right)}+\dfrac{x}{\left(x-1\right)\left(x+1\right)}\right)\cdot\dfrac{x\left(x-1\right)}{2x+1}\\ =\dfrac{x+1+x}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x\left(x-1\right)}{2x+1}\\ =\dfrac{2x+1}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x\left(x-1\right)}{2x+1}\\ =\dfrac{x}{x+1}\)

`c,` Để `M=1/2`

`=> x/(x+1)=1/3`

`<=> (3x)/(3(x+1))= (x+1)/(3(x+1))`

`<=> 3x=x+1`

`<=>3x-x=1`

`<=>2x=1`

`<=>x=1/2`

8 tháng 9 2023

các học bá đâu rùiyeu

9 tháng 2 2021

a, Ta có : \(M=4x^2-9-2\left(x^2+10x+25\right)-2\left(x^2-x+2x-2\right)\)

\(=4x^2-9-2x^2-20x-50-2x^2+2x-4x+4\)

\(=-22x-55\)

b, - Thay \(x=-2\dfrac{1}{3}=-\dfrac{7}{3}\) vào M ta được :

\(M=-\dfrac{11}{3}\)

c, - Thay M = 0 ta được : -22x - 55 = 0

=> x = -2,5

Vậy ...

a) Ta có: \(M=\left(2x+3\right)\left(2x-3\right)-2\left(x+5\right)^2-2\left(x-1\right)\left(x+2\right)\)

\(=4x^2-9-2\left(x^2+10x+25\right)-2\left(x^2+2x-x-2\right)\)

\(=4x^2-9-2x^2-20x-50-2\left(x^2+x-2\right)\)

\(=2x^2-20x-59-2x^2-2x+4\)

\(=-22x-55\)

b) Thay \(x=-2\dfrac{1}{3}\) vào biểu thức \(M=-22x-55\), ta được:

\(M=-22\cdot\left(-2+\dfrac{1}{3}\right)-55\)

\(=-22\cdot\left(\dfrac{-6}{3}+\dfrac{1}{3}\right)-55\)

\(=-22\cdot\dfrac{-5}{3}-55\)

\(=\dfrac{110}{3}-55=\dfrac{110}{3}-\dfrac{165}{3}\)

hay \(M=-\dfrac{55}{3}\)

Vậy: Khi \(x=-2\dfrac{1}{3}\) thì \(M=-\dfrac{55}{3}\)

c) Để M=0 thì -22x-55=0

\(\Leftrightarrow-22x=55\)

hay \(x=-\dfrac{5}{2}\)

Vậy: Khi M=0 thì \(x=-\dfrac{5}{2}\)

21 tháng 12 2021

a: \(M=\dfrac{x^2-3x+2x^2+6x-3x^2-9}{\left(x-3\right)\left(x+3\right)}=\dfrac{3}{x+3}\)

21 tháng 12 2021

câu b c d e đâu anh ơi

 

14 tháng 3 2022

a. \(A=\left(\dfrac{2-3x}{x^2+2x-3}-\dfrac{x+3}{1-x}-\dfrac{x+1}{x+3}\right):\dfrac{3x+12}{x^3-1}\left(ĐKXĐ:x\ne1;x\ne-3\right)\)

\(=\left(\dfrac{2-3x}{\left(x-1\right)\left(x+3\right)}+\dfrac{x+3}{x-1}-\dfrac{x+1}{x+3}\right):\dfrac{3x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\left(\dfrac{2-3x}{\left(x-1\right)\left(x+3\right)}+\dfrac{\left(x+3\right)^2}{\left(x-1\right)\left(x+3\right)}-\dfrac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+3\right)}\right):\dfrac{3x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{2-3x+x^2+6x+9-x^2+1}{\left(x-1\right)\left(x+3\right)}:\dfrac{3x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{3x+12}{\left(x-1\right)\left(x+3\right)}:\dfrac{3x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{3x+12}{\left(x-1\right)\left(x+3\right)}.\dfrac{\left(x-1\right)\left(x^2+x+1\right)}{3x+12}=\dfrac{x^2+x+1}{x+3}\)

\(M=A.B=\dfrac{x^2+x+1}{x+3}.\dfrac{x^2+x-2}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x^2+x-2}{x+3}\)

b. -Để M thuộc Z thì:

\(\left(x^2+x-2\right)⋮\left(x+3\right)\)

\(\Rightarrow\left(x^2+3x-2x-6+4\right)⋮\left(x+3\right)\)

\(\Rightarrow\left[x\left(x+3\right)-2\left(x+3\right)+4\right]⋮\left(x+3\right)\)

\(\Rightarrow4⋮\left(x+3\right)\)

\(\Rightarrow x+3\in\left\{1;2;4;-1;-2;-4\right\}\)

\(\Rightarrow x\in\left\{-2;-1;1;-4;-5;-7\right\}\)

c. \(A^{-1}-B=\dfrac{x+3}{x^2+x+1}-\dfrac{x^2+x-2}{x^3-1}\)

\(=\dfrac{x+3}{x^2+x+1}-\dfrac{x^2+x-2}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{\left(x+3\right)\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}-\dfrac{x^2+x-2}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{x^2-x+3x-3-x^2-x+2}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{x-1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{1}{x^2+x+1}\)

\(=\dfrac{1}{x^2+2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}}=\dfrac{1}{\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\le\dfrac{1}{\dfrac{3}{4}}=\dfrac{4}{3}\)

\(Max=\dfrac{4}{3}\Leftrightarrow x=\dfrac{-1}{2}\)

 

\(M=4x^2-9-2x-10-2\left(x^2+x-2\right)\)

\(=4x^2-2x-19-2x^2-2x+4\)

\(=2x^2-4x-15\)

Khi x=0 thì M=-15