Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử đa thức P(x) có nghiệm nguyên
=>P(x) có nghiệm chia hết cho 1 hoặc -1
=>1 và -1 là nghiệm
+) Nếu x=1
⇒P(1)=1^4−3.1^3−4.1^2−2.1−1⇒P(1)=1^4-3.1^3-4.1^2-2.1-1
⇒P(1)=1−3.1−4.1−2.1−1⇒P(1)=1-3.1-4.1-2.1-1
⇒P(1)=1−3−4−2−1⇒P(1)=1-3-4-2-1
⇒P(1)=−9≠0⇒P(1)=-9≠0
⇒x=1 không phải là nghiệm của P(x)P(x)
+) Nếu x=−1
⇒P(−1)=(−1)^4−3.(−1)^3−4.(−1)^2−2.(−1)−1⇒P(-1)=(-1)^4-3.(-1)^3-4.(-1)^2-2.(-1)-1
⇒P(−1)=1−3.(−1)−4.1−(−2)−1⇒P(-1)=1-3.(-1)-4.1-(-2)-1
⇒P(−1)=1+3−4+2−1⇒P(-1)=1+3-4+2-1
⇒P(−1)=1≠0⇒P(-1)=1≠0
⇒x=−1 không phải là nghiệm của P(x)P(x)
Vậy P(x) không có nghiệm là số nguyên
Dễ mà bạn!
a)
M(x)= 5x^3+2x^4-x^2+3x^2-x^3-x^4+1-4x^3
M(x)= 2x^4-x^4+5x^3-4x^3-x^3-3x^2-x^2+1
M(x)= x^4+2x^2+1
b)
M(x)= x^4+2x^2+1
M(1)= 1^4+2.1^2+1
M(1)= 1+2+1
M(1)= 4
M(-1)= (-1)^4+2.(-1)^2+1
M(-1)= 1+2+1
M(-1)= 4
c) Vì x^4+2x^2+1 >= 1
Nên M(x)= x^4+2x^2+1 không có nghiệm
* M(x) = 5x3 + 2x4 - x2 + 3x2 - x3 - x4 + 1 - 4x3
= ( 2x4 - x4 ) + ( 5x3 - x3 - 4x3 ) + ( 3x2 - x2 ) + 1
= x4 + 2x2 + 1
* M(1) = 14 + 2 .12 + 1 = 1 + 2 . 1 + 1 = 4
M(-1) = (-1)4 + 2. (-1)2 + 1 = 1 + 2.1 + 1 = 4
* Ta có \(x^4\ge0\forall x,x^2\ge0\forall x\Rightarrow x^4+x^2+1\ge1>0\)
=> M(x) vô nghiệm
có \(x^4\ge0\)với mọi x ; \(2x^2\ge0\)với mọi x
=> \(x^4+2x^2\ge0\)với mọi x
=> \(x^4+2x^2+1>0\)với mọi x
=> M(x) = x^4 + 2x^2 + 1 luôn khác 0
=> M(x) không có nghiệm
=> đpcm
tk cho mk nha !!!!~~
M(x) = 0 => 3x4 + x2 + 4 = 0
=> 3x4 + x2 = 0 - 4 = -4
mà 3x4 \(\ge\) 0
x2 \(\ge\)0
vậy đa thức M không có nghiệm (vô nghiệm) (đpcm)
Lời giải:
$2M(x)=2x^4+2x^3+4x^2+2=x^4+(x^4+2x^3+x^2)+3x^2+2$
$=x^4+(x^2+x)^2+3x^2+2\geq 2>0$ với mọi $x$
$\Rightarrow M(x)>0$ với mọi $x$
$\Rightarrow$ đa thức $M(x)$ vô nghiệm.