Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
CÂU 1 GIẢI:
Để P có giá trị nguyên thì: 2n - 5 chia hết cho 3n - 2 =>3.(2n - 5) chia hết cho 3n - 2
<=>6n - 15 chia hết cho 3n - 2
Ta có:6n - 15=(6n - 4) - 11
=2.(3n - 2) - 11
Vậy 2.(3n - 2) - 11 chia hết cho 3n - 2
Mà 2.(3n - 2) chia hết cho 3n - 2 nên 11 chia hết cho 3n - 2
=>3n - 2 thuộc Ư(11)={1;-1;11;-11}
=>3n thuộc{3;1;13;-9}
Mà n thuộc N=>3n chia hết cho 3
=>3n thuộc{3;-9}
Vậy n thuộc{1;-3}
CÂU 2 GIẢI:
M và N ko cùng có giá trị nguyên với cùng 1 giá trị nguyên của a khi M - N=1
Xét hiệu:M - N
TA CÓ:M=3.(7a - 1)/12
M=21a - 3/12
=>M - N=21a - 3/12 - 5a+3/12
=16a - 6/12
Vì a thuộc N=>16a chia hết cho 4(1)
Mà 6 ko chia hết cho 4(2)
Từ (1) và (2)=>16a - 6 ko chia hết cho 4
Mà 12 chia hết cho 4=>M - N khác 0
VẬY M VÀ N KO THỂ CÙNG 1 GIÁ TRỊ NGUYÊN VỚI CÙNG 1 GIÁ TRỊ NGUYÊN a
tk cho công sức của mk nha!mơn nhìu!!!!!^-^
Giải từng bài
Bài 1 :
Ta có :
\(\frac{23+n}{40+n}=\frac{3}{4}\)
\(\Leftrightarrow\)\(4\left(23+n\right)=3\left(40+n\right)\)
\(\Leftrightarrow\)\(92+4n=120+3n\)
\(\Leftrightarrow\)\(4n-3n=120-92\)
\(\Leftrightarrow\)\(n=28\)
Vậy số cần tìm là \(n=28\)
Chúc bạn học tốt ~
Bài 2 :
\(a)\) Gọi \(ƯCLN\left(12n+1;30n+2\right)=d\)
\(\Rightarrow\)\(\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}5\left(12n+1\right)⋮d\\2\left(30n+2\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}}\)
\(\Rightarrow\)\(\left(60n+5\right)-\left(60n+4\right)⋮d\)
\(\Rightarrow\)\(1⋮d\)
\(\Rightarrow\)\(d\inƯ\left(1\right)=\left\{1;-1\right\}\)
\(\Rightarrow\)\(ƯCLN\left(12n+1;30n+2\right)=\left\{1;-1\right\}\)
Vậy \(A=\frac{12n+1}{30n+2}\) là phân số tối giản với mọi giá trị nguyên n
Chúc bạn học tốt ~
Bài 1:
\(D=\frac{x^2-1}{x+1}=\frac{x\left(x+1\right)-x-1}{x+1}=\frac{x\left(x+1\right)}{x+1}-\frac{x-1}{x+1}=x-\frac{x+1-2}{x+1}\in Z\)
=>2 chia hết x+1
=>x+1 thuộc Ư(2)={1;-1;2;-2}
=>x thuộc {0;-2;1;-3}
Bài 2:
Gọi d là UCLN(2n+3;4n+8)
Ta có:
[2(2n+3)]-[4n+8] chia hết d
=>[4n+6]-[4n+8] chia hết d
=>-2 chia hết d =>d={1;2}
với d=2 ps ko tối giản ->d=1
Vậy ps tối giản
\(M=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{99^2}\)
\(\Rightarrow M< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}\)
\(\Rightarrow M< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}\)
\(\Rightarrow M< 1-\frac{1}{99}< 1\)
Dễ thấy M > 0 nên 0 < M < 1
Vậy M không là số tự nhiên.
\(S=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)
\(\Rightarrow S>\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\) (50 số hạng \(\frac{1}{100}\))
\(\Rightarrow S>\frac{1}{100}.50=\frac{1}{2}\)
Vậy \(S>\frac{1}{2}\left(đpcm\right)\)
\(M+N=\frac{7a-1}{4}+\frac{5a+3}{12}=\frac{13a}{6}\)
Với \(a=6k,k\inℤ\)thì: \(N=\frac{30k+3}{12}\)không là số nguyên do tử số là số lẻ, mẫu số là số chẵn.
Với \(a\ne6k,k\inℤ\)thì tổng của \(M+N\)không là số nguyên nên có đpcm.