K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2016

hình như dạng này thiếu dữ liệu

20 tháng 5 2019

\(A=1+3+3^2+3^3+3^4+3^5+.....+3^{2017}\)

\(=1+3+\left(3^2+3^3+3^4+3^5\right)+.....+\left(3^{2014}+3^{2015}+3^{2016}+3^{2017}\right)\)

\(=4+3^2\left(1+3+3^2+3^3\right)+.....+3^{2014}\left(1+3+3^2+3^3\right)\)

\(=4+3^2\cdot40+....+3^{2014}\cdot40\)

\(=4+40\left(3^2+.....+3^{2014}\right)\) chia 40 dư 4.

20 tháng 5 2019

\(\frac{3-x}{2016}-1=\frac{2-x}{2017}+\frac{1-x}{2018}\)

\(\Rightarrow\frac{3-x}{2016}-1+2=\frac{2-x}{2017}+\frac{1-x}{2018}+2\)(thêm 2 vô mỗi vế)

\(\Rightarrow\frac{3-x}{2016}+1=\left(\frac{2-x}{2017}+1\right)+\left(\frac{1-x}{2018}+1\right)\)

\(\Rightarrow\frac{2019-x}{2016}=\frac{2019-x}{2017}+\frac{2019-x}{2018}\)

\(\Rightarrow\left(2019-x\right)\cdot\frac{1}{2016}=\left(2019-x\right)\left(\frac{1}{2017}+\frac{1}{2018}\right)\)

\(\Rightarrow2019-x=0\)

\(\Rightarrow x=2019\)

9 tháng 8 2023

Số hạng thứ 1 là 1.

Số hạng thứ 2 cũng là 1.

Số hạng thứ 3 cũng là 1.

Số hạng thứ 4 là 3, bằng tổng của 3 số hạng trước đó (1 + 1 + 1).

Số hạng thứ 5 = 1 + 1 + 3 = 5

Số hạng thứ 6 = 1 + 3 + 5 = 9

Số hạng thứ 7 = 3 + 5 + 9 = 17 .Và cứ tiếp tục như vậy.

Ta luôn nhận được dãy số sau: 1, 1, 1, 3, 5, 1, 1, 3, 5, 1, 1, 3, 5,... Mẫu lặp lại này có độ dài là 4.

Vì vậy, ta có thể tính số dư khi chia 2023 cho 4

2023:4 dư 3 

Vậy số hạng thứ 2023 sẽ tương ứng với số hạng thứ 3 trong mẫu lặp. Tính số dư khi chia 3 cho 8, ta được kết quả là 3.

 

 

31 tháng 7 2017

a) với n chẵn thì A = \(-4.\frac{n}{2}=-2n\)

với n lẻ thì A = 1 + \(\frac{4.\left(n-1\right)}{2}=1+2\left(n-1\right)=2n-1\)

b) số hạng thứ n của dãy là :

( -1 )n-1 ( 4n - 3 ) hoặc ( -1 )n+1 ( 4n - 3 )

28 tháng 9 2019

Huy Hoàng nhìn trong sách chứ j