Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ND=DP=10/2=5cm
Xét ΔDMN có DE là phân giác
nên ME/EN=MD/DN=4/5
Xét ΔMDP có DF là phân giác
nên MF/FP=MD/DP=4/5
b: Xét ΔMNP có ME/EN=MF/FP
nên EF//NP
c: Xét ΔMKF và ΔMDP có
góc MKF=góc MDP
góc KMF chung
=>ΔMKF đồng dạng với ΔMDP
d: Xét ΔMND có EK//ND
nên EK/ND=MK/MD
Xét ΔMDP cóa KF//DP
nên KF/DP=MK/MD
=>EK/ND=KF/DP
=>EK=KF
=>K là trung điểm của EF
Lời giải:
a) Theo tính chất tia phân giác ta có:
$\frac{EM}{EN}=\frac{DM}{DN}=\frac{2DM}{NP}(1)$
$\frac{FM}{FP}=\frac{DM}{DP}=\frac{2DM}{NP}(2)$
Từ $(1);(2)\Rightarrow \frac{EM}{EN}=\frac{FM}{FP}$
Theo định lý Talet đảo suy ra $EF\parallel NP$
b)
$G$ là điểm nào bạn?
a: Xét ΔDEF có DI là phân giác
nên \(\dfrac{DE}{DF}=\dfrac{EI}{IF}\)
=>\(\dfrac{EI}{4,8}=\dfrac{10}{6}=\dfrac{5}{3}\)
=>EI=8(cm)
b: Ta có: EI+IF=EF
=>EF=6+8=14(cm)
Xét ΔEDF có MI//DF
nên \(\dfrac{MI}{DF}=\dfrac{EI}{EF}=\dfrac{EM}{ED}\)
=>\(\dfrac{MI}{6}=\dfrac{EM}{10}=\dfrac{6}{14}=\dfrac{3}{7}\)
=>\(MI=\dfrac{18}{7}\left(cm\right);EM=\dfrac{30}{7}\left(cm\right)\)
MD+ME=DE
=>MD+30/7=10
=>MD=40/7(cm)
c: Xét ΔDEF có DI là phân giác
nên \(\dfrac{EI}{IF}=\dfrac{ED}{DF}\left(1\right)\)
Xét ΔEDF có MI//DF
nên \(\dfrac{EI}{IF}=\dfrac{ME}{MD}\left(2\right)\)
Từ (1) và (2) suy ra \(\dfrac{ED}{DF}=\dfrac{ME}{MD}\)
a: Xét ΔMNP có
D là trung điểm của MP
E là trung điểm của MN
Do đó: DE là đường trung bình của ΔMNP
Suy ra: DE//NP
hay PDEN là hình thang vuông
DE=NP/2=11(cm)
a: ND=DP=10/2=5cm
Xét ΔDMN có DE là phân giác
nên ME/EN=MD/DN=4/5
Xét ΔMDP có DF là phân giác
nên MF/FP=MD/DP=4/5
b: Xét ΔMNP có ME/EN=MF/FP
nên EF//NP
c: Xét ΔMKF và ΔMDP có
góc MKF=góc MDP
góc KMF chung
=>ΔMKF đồng dạng với ΔMDP
d: Xét ΔMND có EK//ND
nên EK/ND=MK/MD
Xét ΔMDP cóa KF//DP
nên KF/DP=MK/MD
=>EK/ND=KF/DP
=>EK=KF
=>K là trung điểm của EF