K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bạn tự vẽ hình nha!!!
a.

Tam giác MNI vuông tại M có:

\(NI^2=MI^2+MN^2\)

\(NI^2=8^2+6^2\)

\(NI^2=64+36\)

\(NI^2=100\)

\(NI=\sqrt{100}\)

\(NI=10\)

b.

Xét tam giác MDI vuông tại M và tam giác EDI vuông tại E có:

ID là cạnh chung 

MID = EID (ID lad tia phân giác của MIE)

=> Tam giác MDI = Tam giác EDI (cạnh huyền - góc nhọn)

=> DM = DE (2 cạnh tương ứng)

c.

IM = IE (Tam giác MDI = Tam giác EDI)

=> Tam giác IME cân tại A

Xét tam giác DAM và tam giác DNE có:

DEN = DMA ( = 90 )

DE = DM (theo câu b)

NDE = ADM (2 góc đối đỉnh)

=> Tam giác DAM = Tam giác DNE (g.c.g)

Ta có:

IA = IM + MA
IN = IE + EN

mà IM = IE (Tam giác IME cân tại I)

      MA = NE (Tam giác DAM = Tam giác DNE)

=> IA = IN

=> Tam giác IAN cân tại I 

=>  \(IAN=\frac{180-AIN}{2}\) (1)

Tam giác IME cân tại I

=>  \(IME=\frac{180-MIE}{2}\) (2)

Từ (1) và (2)

=> IAN = IME

mà 2 góc này ở vị trí đồng vị

=> ME // AN

17 tháng 6 2017

M N I E D

Theo định lý py ta go ta có :

\(NI^2=MN^2+MI^2\)

\(NI^2=6^2+8^2\)

\(NI^2=100\)

\(\Rightarrow NI=10cm\)

b )

Xét \(\Delta DMI\)\(DEI\) có :

\(DMI=DEI\left(90\right)\)

\(DI\) cạnh chung

\(I_1=I_2\left(gt\right)\)

\(\Rightarrow\Delta DMI=\Delta DEI\left(ch-gn\right)\)

\(\Rightarrow DM=DE\) ( 2 cạnh t ứng )

17 tháng 6 2017

1 2 M I N D E A

a) \(\Delta MNI\) vuông tại M, theo định lí Py-ta-go

Ta có: NI2 = MN2 + MI2

NI2 = 62 + 82

NI2 = 100

\(\Rightarrow NI=\sqrt{100}=10\left(cm\right)\).

b) Xét hai tam giác vuông MID và EID có:

ID: cạnh huyền chung

\(\widehat{I_1}=\widehat{I_2}\left(gt\right)\)

Vậy: \(\Delta MID=\Delta EID\left(ch-gn\right)\)

Suy ra: DM = DE (hai cạnh tương ứng).

c) Ta có: MI = EI (\(\Delta MID=\Delta EID\))

\(\Rightarrow\) \(\Delta MIE\) cân tại I

\(\Rightarrow\) ID là đường phân giác đồng thời là đường trung trực của ME (1)

Ta lại có: hai đường cao MN và AE cắt nhau tại D

\(\Rightarrow\) D là trực tâm của \(\Delta ANI\)

\(\Rightarrow\) ID là đường cao còn lại của \(\Delta ANI\) hay ID \(\perp\) AN (2)

Từ (1) và (2) suy ra: AN // EM (đpcm).

Hộ mik với ạ mik cần gấp cảm ơn ạBài 1: Cho ∆MNP có MN =8cm, MP = 15cm, NP = 17cm.a) Chứng minh ∆MNP vuôngb) Kẻ tia phân giác NI của góc MNP (I MP). Từ I kẻ IK vuông góc với NP.Chứng minh ∆MNI = ∆KIc) Tia IK cắt tia NM tại Q. Chứng minh KP = MQd) Từ M kẻ tia Mx//IK cắt NI ở H. Chứng minh ∆MIH cânBài 2: Cho ∆ABC cân tại A có AB = AC = 5cm, BC= 6cm. Kẻ AD vuông góc vớiBC tại D. Kẻ DE vuông góc với AB tại E, DF...
Đọc tiếp

Hộ mik với ạ mik cần gấp cảm ơn ạ

Bài 1: Cho ∆MNP có MN =8cm, MP = 15cm, NP = 17cm.
a) Chứng minh ∆MNP vuông
b) Kẻ tia phân giác NI của góc MNP (I MP). Từ I kẻ IK vuông góc với NP.
Chứng minh ∆MNI = ∆KI
c) Tia IK cắt tia NM tại Q. Chứng minh KP = MQ
d) Từ M kẻ tia Mx//IK cắt NI ở H. Chứng minh ∆MIH cân
Bài 2: Cho ∆ABC cân tại A có AB = AC = 5cm, BC= 6cm. Kẻ AD vuông góc với
BC tại D. Kẻ DE vuông góc với AB tại E, DF vuông góc với AC tại F.
a) Chứng minh ∆ADB = ∆ADC
b) Tính độ dài AC
c) Giả sử ̂ = 740

. Tính góc ABC

d) Chững minh DE = DF
e) Chứng minh AE = AF
f) Chứng minh DE //BC
Bài 3: Cho ∆MNP có MN = MP = 13cm, NP = 10cm. Kẻ MD vuông góc với NP
tại D.
a) Chứng minh: ND = PD và ̂ ̂
b) Tính độ dài MD
c) Kẻ DA vuông góc MN tại I và IA = ID; kẻ DB vuông góc MP tại H và DH =
BH. Chứng minh rằng AM = MD
d) Chứng minh ∆MAB cân
e) Chứng minh AN vuông góc AM
f) Gọi giao điểm của AB và MN là E, giao điểm của AB và MP là F. Chứng
minh DM là tia phân giác của góc EDF
Bài 4: Cho ∆ABC vuông tại A có AB = 3cm, AC = 4cm.
a) Tính độ dài BC
b) Trên tia đối của tia AC lấy điểm D sao cho AD = AB. ∆ABD có dạng đặc
biệt gì? Vì sao?
c) Lấy trên tia đối của tia AB điểm E sao cho AE = AC .chứng minh DE = BC
Bài 5: cho ∆ABC cân tại A, có góc C= 300

. Vẽ phân giác AD ( D BC). Vẽ DE

vuông góc với AB, DF vuông góc AC.
a) Chứng minh ∆DEF đều
b) Chứng minh ∆BED = ∆CFD
c) Kẻ BM//AD ( M AC) chứng minh ∆ABM đều

0
31 tháng 1 2019

tu ve hinh : 

xet tamgiac AMN can tai A (gt) => goc AMN = goc ANM va AM = AN (dn)

AH vuong goc voi MN => goc AHN = goc AHM = 90o (dn)  

=> tamgiac AMH = tamgiac ANH (ch - gn)

=> goc NAH = goc MAH (dn) ma AH nam giua AN va AM 

=> AH la phan giac cua goc MAN

19 tháng 5 2016

bạn vẽ hình ra đi

8 tháng 3 2020

A D M H E N I

Xét tam giác AMN có góc MAN = 1200 suy ra tam giác AMN cân tại A

suy ra góc AMN=góc ANM = 300

Xét tam giác AHM và tam giác AHN

có AH chung

góc AHM = góc AHN = 900

AM=AN (vì tam giác AMN cân tại A)

suy ra tam giác AHM = tam giác AHN ( cạnh huyền-cạnh góc vuông)

suy ra góc MAH=góc HAN (hai góc tương ứng)

suy ra AH là tia phân giác của góc MAN

b) Xét tam giác vuong AHD và tam giác vuông AhE

có AH chung

góc hAD=góc HAE (CMT)

suy ra tam giác AHD =  tam giác  AHE ( cạnh huyền-góc nhọn)  (1)

suy ra AD=AE suy ra tam giác ADE cân tại A

suy ra góc ADE=góc AED=300

suy ra góc ADE = góc AMN = 300

mà góc ADE đồng vị với góc AMN

suy ra DE//MN

c)  tam giác HEN vuông tại E suy ra góc EHN = 600

tam giác HDM vuông tại D suy ra góc DHM = 600

mà góc DHM + góc DHE + góc EHN = 1800

suy ra góc DHE = 600   (2) 

Từ (1) suy ra DH = HE suy ra tam giác DHE cân tại H  (3)

Từ (2) và (3) suy ra tam giác DHE đều

d) Xét tam giác MIN vuoog tại N suy ra góc NIM = 600

góc IAN kề bù với góc NAM

suy ra góc NAI = 600

tam giác ANI có góc AIN=góc ANI=góc IAN = 600

suy ra tam giác ANI đều

suy ra AI = NI = 10cm

20 tháng 4 2021

*Tự vẽ hình

a) Tam giác MNI cân tại M có :

NI2=MN2+MI2

=> NI2=62+82

=> NI2=100

=> NI=10cm

b) Xét tg IDE và IDM có :

\(\widehat{EID}=\widehat{DIM}\left(gt\right)\)

\(\widehat{M}=\widehat{DEI}=90^o\)

DI-chung

=> Tg IDE=IDM (g.c.g)

=> DE=DM 

c) Xét tg NED và AMD có :

\(\widehat{ADM}=\widehat{NDE}\left(đđ\right)\)

DE=DM(cmt)

\(\widehat{DMA}=\widehat{DEN}=90^o\)

=> Tg NEd=AMD (g.c.g)

=> NE=AM

- Có : EI=MI ( tg IDM=IDE)

=> Ne+EI=AM+MI

=> NI=AI

=> Tg IAN cân tại I

\(\Rightarrow\widehat{NAI}=\widehat{INA}=\frac{180^o-\widehat{NIA}}{2}\left(1\right)\)
- Lại có EI=MI (cmt)

=> Tg IEM cân tại I

\(\Rightarrow\widehat{IEM}=\widehat{IME}=\frac{180^o-\widehat{NIA}}{2}\left(2\right)\)

- Từ (1) và (2) \(\Rightarrow\widehat{IEM}=\widehat{INA}\)

Mà chúng ở vị trí đồng vị

=> EM//AN

#H