Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(sin5x-2sinx\left(cos4x+cos2x\right)=sin5x-2.2sinx.cosx.cos3x\)
\(=sin5x-2sin2x.cos3x\)
\(=sin5x-\left(sin5x+sin\left(-x\right)\right)\)
\(=-sin\left(-x\right)=sinx\)
Rút gọn
A= \(\frac{cosx-cos2x-cos3x+cos4x}{sinx-sin2x-sin3x+sin4x}\)
B= sinx(1+2cos2x+2cos4x+2cos6x)
\(A=\frac{cosx-cos3x+cos4x-cos2x}{sinx-sin3x+sin4x-sin2x}=\frac{2sin2x.sinx-2sin3x.sinx}{-2cos2x.sinx+2cos3x.sinx}\)
\(=\frac{sin2x-sin3x}{cos3x-cos2x}=\frac{-2cos\left(\frac{5x}{2}\right)sin\left(\frac{x}{2}\right)}{-2sin\left(\frac{5x}{2}\right)sin\left(\frac{x}{2}\right)}=cot\left(\frac{5x}{2}\right)\)
\(B=sinx+2cos2x.sinx+2cos4x.sinx+2cos6x.sinx\)
\(=sinx+sin3x-sinx+sin5x-sin3x+sin7x-sin5x\)
\(=sin7x\)
\(cosx.cos\left(\frac{\pi}{3}-x\right)cos\left(\frac{\pi}{3}+x\right)=\frac{1}{2}cosx\left(cos\frac{2\pi}{3}+cos2x\right)=-\frac{1}{4}cosx+\frac{1}{2}cosx.cos2x\)
\(=-\frac{1}{4}cosx+\frac{1}{4}\left(cos3x+cosx\right)=\frac{1}{4}cos3x\)
\(sin5x-2sinx\left(cos4x+cos2x\right)=sinx.cos4x+cosx.sin4x-2sinx.cos4x-2sinx.cos2x\)
\(=sin4x.cosx-cos4x.sinx-2sinx.cos2x=sin3x-2sinx.cos2x\)
\(=sinx.cos2x+cosx.sin2x-2sinx.cos2x\)
\(=sin2x.cosx-cos2x.sinx=sinx\)
\(cot^2x-cos^2x=\frac{cos^2x}{sin^2x}-cos^2x=cos^2x\left(\frac{1}{sin^2x}-1\right)=\frac{cos^2x\left(1-sin^2x\right)}{sin^2x}\)
\(=cos^2x.\left(\frac{cos^2x}{sin^2x}\right)=cot^2x.cos^2x\)
\(\frac{cosx+sinx}{cosx-sinx}-\frac{cosx-sinx}{cosx+sinx}=\frac{\left(cosx+sinx\right)^2-\left(cosx-sinx\right)^2}{\left(cosx-sinx\right)\left(cosx+sinx\right)}\)
\(=\frac{cos^2x+sin^2x+2sinx.cosx-\left(cos^2x+sin^2x-2sinx.cosx\right)}{cos^2x-sin^2x}=\frac{4sinx.cosx}{cos2x}=\frac{2sin2x}{cos2x}=2tan2x\)
\(\frac{sin4x+cos2x}{1-cos4x+sin2x}=\frac{2sin2x.cos2x+cos2x}{1-\left(1-2sin^22x\right)+sin2x}=\frac{cos2x\left(2sin2x+1\right)}{sin2x\left(2sin2x+1\right)}=\frac{cos2x}{sin2x}=cot2x\)
\(A=sin^2x\left(sinx+cosx\right)+cos^2x\left(sinx+cosx\right)\)
\(=\left(sin^2x+cos^2x\right)\left(sinx+cosx\right)=sinx+cosx\)
\(B=\frac{sinx}{cosx}\left(\frac{1+cos^2x-sin^2x}{sinx}\right)=\frac{sinx}{cosx}\left(\frac{2cos^2x}{sinx}\right)=2cosx\)
\(A=cos2x+sin4x-cos6x\)
\(=\left(cos2x-cos6x\right)+sin4x=-2.sin4x.sin\left(-2x\right)+sin4x\)
\(=2sin4x.sin2x+sin4x=sin4x\left(2sin2x+1\right)\)
\(B=sinx-sin2x+sin5x+sin8x\)
\(=\left(sin5x+sinx\right)+\left(sin8x-sin2x\right)\)
\(=2.sin3x.cos2x+2.sin3x.cos5x\)
\(=2sin3x\left(cos2x+cos5x\right)\)
\(\frac{sin4x-sin2x}{1-cos2x+cos4x}=\frac{2sin2x.cos2x-sin2x}{1-cos2x+2cos^22x-1}=\frac{sin2x\left(2cos2x-1\right)}{cos2x\left(2cos2x-1\right)}=\frac{sin2x}{cos2x}=tan2x\)
\(\Rightarrow\) đề sai
b/
\(\frac{1-cos4x}{sin4x}=\frac{1-\left(1-2sin^22x\right)}{2sin2x.cos2x}=\frac{2sin^22x}{2sin2x.cos2x}=\frac{sin2x}{cos2x}=tan2x\)
Đề sai tiếp lần 2
\(D=\frac{sin4x+sin5x+sin6x}{cos4x+cos5x+cos6x}\)
\(=\frac{\left(sin4x+sin6x\right)+sin5x}{\left(cos4x+cos6x\right)+cos5x}\)
\(=\frac{2sin\frac{4x+6x}{2}.cos\frac{4x-6x}{2}+sin5x}{2cos\frac{4x+6x}{2}.cos\frac{4x-6x}{2}+cos5x}\)
\(=\frac{2sin5x.cos\left(-x\right)+sin5x}{2cos5x.cos\left(-x\right)+cos5x}=\frac{sin5x\left(2.cos\left(-x\right)+1\right)}{cos5x\left(2.cos\left(-x\right)+1\right)}=\frac{sin5x}{cos5x}=tan5x\)
\(2\left[\left(sinx+cosx+1\right)\left(sinx+cosx-1\right)\right]^2\)
\(=2\left[\left(sinx+cosx\right)^2-1\right]^2=2\left(sin^2x+cos^2x+2sinx.cosx-1\right)^2\)
\(=2\left(2sinx.cosx\right)^2=2sin^22x=1-cos4x\)
b/ \(\frac{3-4cos2a+2cos^22a-1}{3+4cos2a+2cos^22a-1}=\frac{2\left(cos^22a-2cos2a+1\right)}{2\left(cos^22a+2cos2a+1\right)}=\frac{\left(cos2a-1\right)^2}{\left(cos2a+1\right)^2}\)
\(\frac{\left(1-2sin^2a-1\right)^2}{\left(2cos^2a-1+1\right)^2}=\frac{4sin^4a}{4cos^4a}=tan^4a\)
c/ \(cos^22x+sin^22x-2sin2x.cos2x+2sin3x.cosx-2sinx.cosx-sin^2x\)
\(=1-sin4x+sin4x+sin2x-sin2x-sin^2x\)
\(=1-sin^2x=cos^2x\)