K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2018

\(5a^2+10b^2-6ab-4a+2b+3\)

\(=\left(a^2-6ab+9b^2\right)+\left(4a^2-4a+1\right)+\left(b^2+2b+1\right)+1\)

\(=\left(a-3b\right)^2+\left(2a-1\right)^2+\left(b+1\right)^2+1>0\left(đpcm\right)\)

6 tháng 9 2018

câu b đề sai ak

25 tháng 1 2017

Điện​thọi bé tý khi viết lời giải chẳng thẫy đề đâu. Vp (a+b)^3=bó tay

=1 phải ko?

21 tháng 7 2016

Hằng đẳng thức bậc cao

21 tháng 7 2016

a, \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)  Hệ thức bình phương tổng ba số

\(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\) Hệ thức lập phương tổng ba số 

19 tháng 2 2017

1 . nhá: cách làm: phân tích đề bài ta cho làm sao xuất hiện hiện các hằng đẳg thuức" \(\left(a-b\right)^3=b\left(a-b\right)^2\Leftrightarrow\frac{\left(a-b\right)^3}{\left(a-b\right)^2}=b\Rightarrow a=2b\)

từ đó chỗ nào có "a" thay vào P thì ta sẽ đc kq là 1

18 tháng 9 2018

a) \(a^2+25b^2+17+10b-8a=0\)

\(\Rightarrow a^2-8a+16+25b^2+10b+1=0\)

\(\Rightarrow\left(a-4\right)^2+\left(5b+1\right)^2=0\)

\(\left(a-4\right)^2\ge0\) với mọi a

\(\left(5b+1\right)^2\ge0\) với mọi b

\(\Rightarrow\left(a-4\right)^2+\left(5b+1\right)^2\ge0\) với mọi a,b

\(\left(a-4\right)^2+\left(5b+1\right)^2=0\)

\(\Rightarrow\left\{{}\begin{matrix}\left(a-4\right)^2=0\\\left(5b+1\right)^2=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a-4=0\\5b+1=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=4\\5b=-1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=4\\b=-\dfrac{1}{5}\end{matrix}\right.\)

19 tháng 2 2017

G/t suy ra (a-2b)(a-b)2=0

suy ra a=2b hoặc a=b

thay vào được ....

19 tháng 3 2018

         \(a>2b+3\)

\(\Leftrightarrow\)\(4a>8b+12\)

\(\Leftrightarrow\)\(4a-5>8b+12-5\)

\(\Leftrightarrow\)\(4a-5>8b+7\) (đpcm)

19 tháng 3 2018

        \(a^2+b^2+c^2\ge ab+bc+ca\)

 \(\Leftrightarrow\)\(a^2+b^2+c^2-ab-bc-ca\ge0\)

\(\Leftrightarrow\)\(2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)

\(\Leftrightarrow\)\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)   (luôn đúng)

Dấu   "="  xảy ra  <=>  a = b = c