K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2017

a) \(M=\frac{211241}{849338}\)

b) a = 9; b = 11

29 tháng 9 2018

Từ biểu thức trên không thể có x = y

\(\sqrt{\left(2-\frac{1}{y}\right).\frac{1}{y}}=\sqrt{\left(2-\frac{1}{x}\right).\frac{1}{x}}\)

=> \(\left(2-\frac{1}{y}\right).\frac{1}{y}=\left(2-\frac{1}{x}\right).\frac{1}{x}\)

=> \(\frac{2}{y}-\frac{1}{y^2}=\frac{2}{x}-\frac{1}{x^2}\)

=> \(\frac{2}{x}-\frac{2}{y}=\frac{1}{x^2}-\frac{1}{y^2}\)

=> \(2.\left(\frac{1}{x}-\frac{1}{y}\right)=\left(\frac{1}{x}+\frac{1}{y}\right)\left(\frac{1}{x}-\frac{1}{y}\right)\)( # )

Với x = y

=> \(\frac{1}{x}=\frac{1}{y}\)

=> \(\frac{1}{x}-\frac{1}{y}=0\)

=> ( # ) luôn đúng

Với \(x\ne y\)

=> \(\frac{1}{x}-\frac{1}{y}\ne0\)

Chia cả hai vế của ( # ) cho \(\frac{1}{x}-\frac{1}{y}\)

=> 2 = \(\frac{1}{x}+\frac{1}{y}\)

Vậy với x, y thỏa mãn \(2=\frac{1}{x}+\frac{1}{y}\)hoặc x = y ( x, y > 0 ) thì \(\sqrt{\left(2-\frac{1}{y}\right).\frac{1}{y}}=\sqrt{\left(2-\frac{1}{x}\right).\frac{1}{x}}\)luôn đúng và với \(x\ne y\)thì biểu thức vẫn có thể đúng.

Vậy với biểu thức đúng thì x chưa chắc đã bằng y

29 tháng 9 2018

Cám ơn Nguyễn Chí Thành

Bạn đúng rồi

Đúng là mk nghĩ thiếu thường hợp .

^.^

28 tháng 8 2017

1. 

= -(13 + 3 căn7 ) / 2  +  -(7 + 3 căn7 ) / 2 

=  -7 + 3 căn7

16 tháng 6 2021

Xét bài toán phụ sau:

Nếu \(a+b+c=0\Leftrightarrow\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\left|\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right|\)  \(\left(a,b,c\ne0\right)\)

Thật vậy

Ta có: \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\sqrt{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2-2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)}\)

\(=\sqrt{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2-2\cdot\frac{a+b+c}{abc}}=\sqrt{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2-2\cdot\frac{0}{abc}}\)

\(=\sqrt{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}=\left|\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right|\)

Bài toán được chứng minh

Quay trở lại, ta sẽ áp dụng bài toán phụ vào bài chính:

Ta có: \(P=\sqrt{\frac{1}{2^2}+\frac{1}{1^2}+\frac{1}{3^2}}+\sqrt{\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{5^2}}+...+\sqrt{\frac{1}{2^2}+\frac{1}{779^2}+\frac{1}{801^2}}\)

Vì \(2+1+\left(-3\right)=0\) nên:

\(\sqrt{\frac{1}{2^2}+\frac{1}{1^2}+\frac{1}{3^2}}=\sqrt{\frac{1}{2^2}+\frac{1}{1^2}+\frac{1}{\left(-3\right)^2}}=\sqrt{\left(\frac{1}{2}+\frac{1}{1}-\frac{1}{3}\right)^2}=\frac{1}{2}+1-\frac{1}{3}\)

Tương tự ta tính được:

\(\sqrt{\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{5^2}}=\frac{1}{2}+\frac{1}{3}-\frac{1}{5}\) ; ... ; \(\sqrt{\frac{1}{2^2}+\frac{1}{799^2}+\frac{1}{801^2}}=\frac{1}{2}+\frac{1}{799}-\frac{1}{801}\)

\(\Rightarrow P=\frac{1}{2}+1-\frac{1}{3}+\frac{1}{2}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2}+\frac{1}{799}-\frac{1}{801}\)

\(=\frac{1}{2}\cdot400+\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{799}-\frac{1}{801}\right)\)

\(=200+\frac{800}{801}=\frac{161000}{801}=\frac{a}{b}\Rightarrow\hept{\begin{cases}a=161000\\b=801\end{cases}}\)

\(\Rightarrow Q=161000-801\cdot200=800\)

29 tháng 7 2015

bạn ơi đáng lẽ dưới mẫu phải là 1 chứ \(\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)=1\)