Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, -1/2 ; 0 ; 1/2
b, -1,7 ; 0 ; 1,7
c, -2,1 ; 0,5 ; 2,5
d, -5/6 ; 0 ; 7/11 ; 0,7
\(\left|3-2x\right|+\left|4y+5\right|=0\)
Do \(\left|3-2x\right|\ge0;\left|4y+5\right|\ge0\Rightarrow\left|3-2x\right|+\left|4y+5\right|\ge0\)
Dấu "=" xảy ra khi \(x=\frac{2}{3};y=-\frac{5}{4}\)
Mấy bài khác tương tự
|x - y| + |y + 9/25| \(\le\)0
Ta có: |x - y| \(\ge\)0 \(\forall\)x,y
|y + 9/25| \(\ge\) 0 \(\forall\)y
=> |x - y| + |y + 9/25| \(\ge\)0 \(\forall\)x, y
Dấu "=" xảy ra khi : \(\hept{\begin{cases}x-y=0\\y+\frac{9}{25}=0\end{cases}}\) => \(x=y=-\frac{9}{25}\)
Vậy ...
(x + y)2012 + 2013|y - 1| = 0
Ta có: (x + y)2012 \(\ge\)0 \(\forall\)x, y
2013|y - 1| \(\ge\)0 \(\forall\)y
=> (x + y)2012 + 2013|y - 1| \(\ge\)0 \(\forall\)x,y
Dấu "=" cảy ra khi : \(\hept{\begin{cases}x+y=0\\y-1=0\end{cases}}\) => \(\hept{\begin{cases}x=-y\\y=1\end{cases}}\) => \(\hept{\begin{cases}x=-1\\y=1\end{cases}}\)
Vậy ...
a,\(f\left(x\right)=0\)khi \(x=\orbr{\begin{cases}-1\\5\end{cases}}\),
b\(f\left(x\right)>0\)khi \(x>0\)
c\(f\left(x\right)< 0\)khi\(-5< x< -1\)
a, f(x)=\(x^2+4x-5=0\)
\(\Rightarrow x^2+4x^{ }=5\)
\(x.\left(x+4\right)=5\)
x+4=5 suy ra x=1
a) Vì \(\hept{\begin{cases}\left|5-4x\right|\ge0\\\left|7y-3\right|\ge0\end{cases}}\)nên dấu "=" xảy ra <=> x = 5/4 ; y = 3/7
b) Vì \(\hept{\begin{cases}\left|x-3y-1\right|\ge0\\\left|y-4\right|\ge0\end{cases}}\)nên dấu "=" xảy ra <=> x = 13 ; y = 4
a)do |5-4x|+|7y-3|=0,mà|5-4x| và|7y-3| đều lớn hơn hoặc = 0
suy ra 5-4x=7y-3=0 thì biểu thức mới thỏa mãn
(do mọi số trong dấu GTTĐ đều lớn hơn hoặc bằng 0)
tự giải nốt nhé
= 1
=0