Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Z_C=\frac{1}{\omega C}=100\Omega\)
L thay đổi để \(U_{Lmax}\) khi \(Z_L=\frac{R^2+Z_C^2}{Z_C}=200\Omega\)
\(\Rightarrow L=\frac{Z_L}{\omega}=\frac{2}{\pi}\)(H)
Trong trường hợp này, do \(r>|Z_L-Z_C|\)
Nên để công suất của mạch cực đại thì R = 0 nhé.
@phynit mình đã lm như thế mà không ra kết quả, bạn có thể giải ra chi tiết công thức tính P sau cùng đó giúp mình đc k
Bạn nên gửi mỗi câu hỏi một bài thôi để mọi người tiện trao đổi.
1. \(Z_L=200\sqrt{3}\Omega\), \(Z_C=100\sqrt{3}\Omega\)
Suy ra biểu thức của i: \(i=1,1\sqrt{2}\cos\left(100\pi t-\frac{\pi}{3}\right)A\)
Công suất tức thời: p = u.i
Để điện áp sinh công dương thì p > 0, suy ra u và i cùng dấu.
Biểu diễn vị trí tương đối của u và i bằng véc tơ quay ta có:
u u i i 120° 120°
Như vậy, trong 1 chu kì, để u, i cùng dấu thì véc tơ u phải quét 2 góc như hình vẽ.
Tổng góc quét: 2.120 = 2400
Thời gian: \(t=\frac{240}{360}.T=\frac{2}{3}.\frac{2\pi}{100\pi}=\frac{1}{75}s\)
2. Khi nối tắt 2 đầu tụ điện thì cường độ dòng điện hiệu dụng không đổi \(\Rightarrow Z_1=Z_2\Leftrightarrow Z_C-Z_L=Z_L\Leftrightarrow Z_C=2Z_L\)
\(U_C=1,2U_d\Leftrightarrow Z_C=2Z_d\Leftrightarrow Z_C=2\sqrt{R^2+Z_L^2}\)
\(\Leftrightarrow2Z_L=\sqrt{R^2+Z_L^2}\Leftrightarrow R=\sqrt{3}Z_L\)
Khi bỏ tụ C thì cường độ dòng điện của mạch là: \(I=\frac{U}{Z_d}=\frac{U}{\sqrt{R^2+Z_L^2}}=\frac{220}{\sqrt{3.Z_L^2+Z_L^2}}=0,5\)
\(\Rightarrow Z_L=220\Omega\)
Bạn nên hỏi mỗi câu một bài để tiện thảo luận nhé.
Câu 1.
\(Z_L=\omega L=400\Omega\)
\(Z_C=100\Omega\)
Để URL vuông pha vơi URC thì
\(\tan\varphi_{RL}.\tan\varphi_{RC}=-1\)
\(\Rightarrow \dfrac{Z_L}{R}.\dfrac{-Z_C}{R}=-1\)
\(\Rightarrow R = \sqrt{Z_L.Z_C}=\sqrt{400.100}=200\Omega\)
Câu 2: Tương tự câu 1.
\(\tan \varphi_{RL}.\tan\varphi_m=-1\)
\(\Rightarrow \dfrac{Z_L}{R}.\dfrac{Z_L-Z_C}{R}=-1\)
\(\Rightarrow ...\)
\(\leftrightarrow\frac{u^2_R}{\left(\frac{8}{5}\right)^2}+\frac{u^2_L}{\left(\frac{5}{2}\right)^2}=1\)
Điều kiện :
\(\begin{cases}u_R\le\frac{8}{5}\left(V\right)\\u_L\le\frac{5}{2}\left(V\right)\end{cases}\)
\(\Rightarrow U_{\text{oR}}=\frac{8}{5}\left(V\right);U_{0L}=\frac{5}{2}\left(V\right)\)
\(\Rightarrow\frac{R}{\omega L}=\frac{8}{5}.\frac{2}{5}=\frac{16}{25}\leftrightarrow L=\frac{25R}{16L}=\frac{1}{2\pi}\left(H\right)\)
Đáp án C
mình giải ko ra đáp án bạn ạ. ko biết sai chỗ nào...hichic
Cách làm của bạn Hồng là đúng rồi. Bạn thử lấy \(R=100\Omega\)xem có ra kết quả không?