Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điện trở: \(R=R1+\left(\dfrac{R2.R3}{R2+R3}\right)=16+\left(\dfrac{24.12}{24+12}\right)=24\Omega\)
Cường độ dòng điện R, R1 và R23:
\(\left\{{}\begin{matrix}I=U:R=24:24=1A\\I=I1=I23=1A\left(R1ntR23\right)\end{matrix}\right.\)
Hiệu điện thế R1 VÀ R23:
\(\left\{{}\begin{matrix}U1=R1.I1=16.1=16V\\U23=U-U1=24-16=8V\end{matrix}\right.\)
\(\Rightarrow U23=U2=U3=8V\)(R1//R23)
\(\left\{{}\begin{matrix}I2=U2:R2=8:24=\dfrac{1}{3}A\\I3=U3:R3=8:12=\dfrac{2}{3}A\end{matrix}\right.\)
\(MCD:\left(R2//R3\right)ntR1\)
\(\rightarrow R=\dfrac{R2\cdot R3}{R2+R3}+R1=\dfrac{10\cdot12}{10+12}+10=\dfrac{170}{11}\Omega\)
\(I=I1=I23=U:R=24:\dfrac{170}{11}=\dfrac{132}{85}A\)
\(\rightarrow U1=I1\cdot R1=\dfrac{132}{85}\cdot10=\dfrac{264}{17}V\)
\(\rightarrow U23=U2=U3=U-U1=24-\dfrac{264}{17}=\dfrac{144}{17}V\)
\(\rightarrow\left\{{}\begin{matrix}I2=U2:R2=\dfrac{144}{17}:10=\dfrac{72}{85}A\\I3=U3:R3=\dfrac{144}{17}:12=\dfrac{12}{17}A\end{matrix}\right.\)
CTM: \(R_1//\left(R_2ntR_3\right)\)
a)\(R_{23}=R_2+R_3=12+12=24\Omega\)
\(R_{tđ}=\dfrac{R_1\cdot R_{23}}{R_1+R_{23}}=\dfrac{6\cdot24}{6+24}=4,8\Omega\)
b)\(U_1=U_{23}=U=12V\)
\(I_m=\dfrac{U}{R_{tđ}}=\dfrac{12}{4,8}=2,5A\)
\(I_1=\dfrac{U_1}{R_1}=\dfrac{12}{6}=2A\)
\(I_2=I_3=I_{23}=I_m-I_1=2,5-2=0,5A\)
1. a. Theo ht 4' trg đm //, ta có: Rtđ= (R1.R2)/(R1+R2)= (3.6)/(3+6)=2 ôm
b.Theo ĐL ôm, ta có: I= U/Rtđ=24/2=12 A
I1=U/R1=24/3=8 ôm
I2=U/R2=24/6=4 ôm
2. a. Theo ht 4' trg đm //, ta có: Rtđ=(R1.R2.R3)/(R1+R2+R3)= (6.12.4)/(6+12+4)=13,09 ôm
b. Áp dụng ĐL Ôm, ta có: U=I.R=3.13,09=39,27 V
c. Theo ĐL Ôm, ta có:
I1=U/R1=39,27/6=6.545 A
I2=U/R2=39,27/12=3,2725 A
I3=U/R3=39,27/4=9.8175 A
(R1 nt R2)//(R3 nt Rx)
a,\(=>Rtd=\dfrac{\left(R1+R2\right)\left(R3+Rx\right)}{R1+R2+R3+Rx}=\dfrac{\left(12+8\right)\left(16+14\right)}{12+8+16+14}=12\Omega\)
\(=>Im=\dfrac{Um}{Rtd}=\dfrac{48}{12}=4A\)
b, \(=>Ix=Ix3,,,I1=I12\)(gọi điện trở Rx là y(ôm)
theo bài ra \(=>Ix=\dfrac{1}{3}I1=>I3x=\dfrac{1}{3}I12=>I12=3I1x\)
\(=>\dfrac{U12}{R1+R2}=3.\dfrac{U3x}{R3+y}=>\dfrac{48}{12+8}=\dfrac{3.48}{16+y}=>y=44\Omega=>Rx=44\Omega\)
a,\(R1nt\left(R2//R3\right)=>Rtd=R1+\dfrac{R2R3}{R2+R3}=4+\dfrac{6.3}{6+3}=6\left(om\right)\)
b,\(=>I1=I23=\dfrac{Uab}{Rtd}=\dfrac{9}{6}=1,5A\)
\(=>U23=I23.R23=1,5.\dfrac{6.3}{6+3}=3V=U2=U3\)
\(=>I2=\dfrac{U2}{R2}=\dfrac{3}{6}=0,5A,=>I3=\dfrac{U3}{R3}=\dfrac{3}{3}=1A\)
c,\(=>Im=Ix=I23=\dfrac{1}{3}.1,5=0,5A\)
\(=>RTd=Rx+\dfrac{R2.R3}{R2+R3}=Rx+\dfrac{6.3}{6+3}=\dfrac{U}{Im}=\dfrac{9}{0,5}=18\)
\(=>Rx=16\left(om\right)\)
\(\Rightarrow\left\{{}\begin{matrix}a,R1//\left(R2ntR3\right)\Rightarrow Rtd=\dfrac{R1\left(R2+R3\right)}{R1+R2+R3}=6\Omega\\b,\Rightarrow\left\{{}\begin{matrix}U=U1=U23=24V\Rightarrow I1=\dfrac{U1}{R1}=\dfrac{8}{3}A\\I2=I3=\dfrac{U23}{R2+R3}=\dfrac{4}{3}A\\U2=I2.R2=8V\\U3=U-U2=16V\end{matrix}\right.\\c,R1//\left(R2ntRx\right)\Rightarrow Im=1,5.\dfrac{24}{6}=6A\\\Rightarrow Rtd=\dfrac{R1\left(R2+Rx\right)}{R1+R2+Rx}=\dfrac{9\left(6+Rx\right)}{15+Rx}=\dfrac{24}{Im}=4\left(\Omega\right)\Rightarrow Rx=1,2\Omega\end{matrix}\right.\)