Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a . Điện trở tương đương của đoạn mạch AB và hiệu điện thế giữa hai đầu mỗi điện trở.
– Điện trở tương đương:
R = R1 + R2 = 8 +4 = 12 (Ω)
– Cường độ dòng điện trong mạch
I = = = 2(A)
– Hiệu điện thế giữa hai đầu R1, R2:
U1 = I1R1 = 2.8 = 16(V)
U2 = I2R2 = 2.4 = 8(V)
b.
Công suất điện tiêu thụ: (công thức đúng 0,25đ)
P = U.I = 24 . 2 = 48 (W)
c.
Chiều dài của dây dẫn R2: (công thức đúng 0,25đ)
d.
Điện trở của biến trở:
– Cường độ dòng điện qua R1:
P1 = I12R1
= 0,25(A) ⇒ I1 = 0,5(A)
-Điện trở toàn mạch:
– Điện trở của biến trở:
Rb = R – R12 = 48 – 12 = 36 (Ω)
cho mk hỏi thêm ý này nha
Để công suất tiêu thụ của điện trở R1 là cực đại thì biến trở phỉa có giá trị là bao nhiêu ?
1. Khi khóa K mở, sơ đồ mạch điện như sau: R1 nt R2 nt Rx
Công suất tỏa nhiệt trên biến trở là: \(P_x=U_xI=I^2R_x=\dfrac{U^2}{\left(R_1+R_2+R_x\right)}R_x\)
\(\Leftrightarrow P_x=\dfrac{U^2}{\dfrac{R_1+R_2}{R_x}+1}\)
Để \(\left(P_x\right)_{max}\) thì \(\left(\dfrac{R_1}{R_x}+\dfrac{R_2}{R_x}\right)_{min}\)
Áp dụng BĐT Cosi vào hai số \(\dfrac{R_1}{R_x}\) và \(\dfrac{R_2}{R_x}\) ta có:
\(\dfrac{R_1}{R_x}+\dfrac{R_2}{R_x}\ge2\sqrt{\dfrac{R_1R_2}{R_x^2}}\)
Dấu "=" xảy ra khi \(\dfrac{R_1}{R_x}=\dfrac{R_2}{R_x}\)\(\Rightarrow R_2=R_1=12\Omega\)
2. Khi K đóng, sơ đồ mạch điện như sau: R1 nt [(R2 nt Rx)//R3]
Công suất tỏa nhiệt đoạn mạch PQ là: \(P=U_{23x}.I=I^2R_{23x}=\dfrac{U^2}{\left(R_1+R_{23x}\right)^2}.R_{23x}\)
\(\Leftrightarrow12=\dfrac{24^2}{\left(12+R_{23x}\right)^2}.R_{23x}\)
\(\Rightarrow R_{23x}=12\Omega\)
Ta có: \(R_{23x}=\dfrac{\left(R_2+R_x\right)R_3}{R_2+R_3+R_x}\)\(\Leftrightarrow12=\dfrac{\left(12+R_x\right).18}{12+18+R_x}\)
\(\Rightarrow R_x=24\Omega\)
ta có \(Im=Ix=\dfrac{U}{\left(Rx+r\right)}\)
\(=>Px=Ix^2.Rx=\dfrac{U^2Rx}{\left(Rx+r\right)^2}=\dfrac{U^2}{\dfrac{\left(Rx+r\right)^2}{\sqrt{Rx}^2}}\)
\(=>Px=\dfrac{U^2}{\left(\sqrt{Rx}+\dfrac{r}{\sqrt{Rx}}\right)^2}\)
Px đạt cực đại <=>\(\left(\sqrt{Rx}+\dfrac{r}{\sqrt{Rx}}\right)^2\) đạt Min
áp dụng bdt cosi(do Rx,r không âm)
\(=>\left(\sqrt{Rx}+\dfrac{r}{\sqrt{Rx}}\right)^2\ge4r\)
dấu"=" xảy ra<=>\(\sqrt{Rx}=\dfrac{r}{\sqrt{Rx}}< =>Rx=r\)
vậy Rx=r thì Px đạt cực đại
Hình đâu bạn