K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2017

M=1+3+3^2+......+3^117+3^118+3^119

M=3^0+3^1+3^2+......+3^117+3^118+3^119

M có số hạng là:

(119-0):1+1=120(số)

Vì 120 chia hết cho 3 nên ta chia dãy số M thành các nhóm,mỗi nhóm có 3 số hạng

Ta có:M=3^0+3^1+3^2+......+3^117+3^118+3^119

M=(3^0+3^1+3^2)+......+(3^117+3^118+3^119)

M=3^0.(1+3+3^2)+.......+3^117.(1+3+3^2)

M=3^0.13+......+3^117.13

M=13.(3^0+.....+3^117)

=>M chia hết cho 13

28 tháng 3 2017

Đầu bài sai rồi bạn ơi vì tất cả các số sau số 1 đều chia hết cho 3 mà 1 chia 3 dư 1 nên M chia 3 dư 1

1 tháng 10 2017

Bài 1 : \(A=1+3+3^2+...+3^{31}\)

a. \(A=\left(1+3+3^2\right)+...+3^9.\left(1.3.3^2\right)\)

\(\Rightarrow A=13+3^9.13\)

\(\Rightarrow A=13.\left(1+...+3^9\right)\)

\(\Rightarrow A⋮13\)

b. \(A=\left(1+3+3^2+3^3\right)+...+3^8.\left(1+3+3^2+3^3\right)\)

\(\Rightarrow A=40+...+3^8.40\)

\(\Rightarrow A=40.\left(1+...+3^8\right)\)

\(\Rightarrow A⋮40\)

1 tháng 10 2017

Bài 2:

Ta có: \(C=3+3^2+3^4+...+3^{100}\)

\(\Rightarrow C=(3+3^2+3^3+3^4)+...+(3^{97}+3^{98}+3^{99}+3^{100})\)

\(\Rightarrow3.(1+3+3^2+3^3)+...+3^{97}.(1+3+3^2+3^3)\)

\(\Rightarrow3.40+...+3^{97}.40\)

Vì tất cả các số hạng của biểu thức C đều chia hết cho 40

\(\Rightarrow C⋮40\)

Vậy \(C⋮40\)

9 tháng 7 2015

 M=1+3+32+33+...+3118+3119

=(1+3+32)+(33+34+35)+...+(3117+3118+3119)

=(1+3+32)+(33.1+33.3+33.32)+...+(3117.1+3117.3+3117.32)

=(1+3+32)+33.(1+3+32)+...+3117.(1+3+32)

=13+33.13+...+3117.13

=13.1+33.13+...+3117.13

=13.(1+33+3117)

=> M chia hết cho 13

8 tháng 5 2018

a) ta có: \(M=1+3+3^2+3^3+...+3^{119}\)

             \(M=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{117}+3^{118}+3^{119}\right)\)

             \(M=\left(1+3+3^2\right)+3^3.\left(1+3+3^2\right)+...+3^{117}.\left(1+3+3^2\right)\)

             \(M=\left(1+3+3^2\right).\left(1+3^3+...+3^{117}\right)\)

            \(M=13.\left(1+3^3+...+3^{117}\right)⋮13\left(đpcm\right)\)

b) ta có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{2010^2}< \frac{1}{2009.2010}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2010^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2009.2010}\)

                                                            \(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2009}-\frac{1}{2010}\)

                                                             \(=1-\frac{1}{2010}< 1\)

\(\Rightarrow N=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2010^2}< 1\left(đpcm\right)\)

8 tháng 5 2018

a, \(M=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{117}+3^{118}+3^{119}\right)\)

\(=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^{117}\left(1+3+3^2\right)\)

\(=\left(1+3+3^2\right)\left(1+3^3+3^6+...+3^{117}\right)\)

\(=13.\left(1+3^3+...+3^{117}\right)⋮13\)

b, \(N=\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{2010.2010}\)

\(< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2009.2010}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2009}-\frac{1}{2010}\)

\(=1-\frac{1}{2010}=\frac{2009}{2010}< 1\)

\(\Rightarrow N< 1\)

22 tháng 11 2018

a) A = 2 + 22 + ... + 2119 + 2120

A = ( 2 + 22 ) + ... + ( 2119 + 2120 )

A = 2 ( 1 + 2 ) + ... + 2119 ( 1 + 2 )

A = 2 . 3 + ... + 2119 . 3

A = 3 ( 2 + ... + 2119 ) chia hết cho 3 ( đpcm )

b) tương tự câu a)

Gợi ý : nhóm 3 số một

22 tháng 11 2018

a) A = 2 + 22 + 23 + ... + 2120 .

        = ( 2 + 22 ) + ( 23 + 24 ) + ... + ( 2119 + 2120 )

        = 2 ( 1 + 2 ) + 23 ( 1 + 2 ) + ... + 2119 ( 1 + 2 )

        = 2 . 3 + 23 . 3 + ... + 2119 . 3 

        = 3 ( 2 + 23 + 25 + ... + 2119 \(⋮\)3.

Chú ý : Cần để ý số số hạng của biểu thức , để xem có gộp được lại thành nhóm đủ hay không . Tương tự ở câu b .

 b) A = 2 + 2+ 23 + ... + 2120

         = ( 2 + 22 + 23 ) + ( 24 + 25 + 26) + ... + ( 2118 + 2119 + 2120 )

         = 2 ( 1 + 2 + 22 ) + 24 ( 1 + 2 + 22 ) + ... + 2118 ( 1 + 2 + 22 )

         = 2 . 7 + 24 . 7 + ... + 2118 . 7

         = 7 ( 2 + 24 + 27 + ... + 2118 )\(⋮\)7

Chúc bn học tốt Toán !

1 tháng 11 2018

\(M=2+2^3+2^5+2^7+....+2^{51}\)

\(=\left(2+2^3\right)+\left(2^5+2^7\right)+....+\left(2^{49}+2^{51}\right)\)

\(=10+2^4\left(2+2^3\right)+....+2^{48}\left(2+2^3\right)\)

\(=10+2^4.10+...+2^{48}.10\)

\(=10\left(1+2^4+...+2^{48}\right)\Rightarrow M⋮10\)

\(=2.5.\left(1+2^4+...+2^{48}\right)\Rightarrow M⋮5\)

1 tháng 11 2018

\(M=2+2^3+2^5+2^7+....+2^{51}.\)

\(M+2^{ }=2+2+2^3+2^5+2^7+.....+2^{51}\)

\(=\left(2+2+2^3\right)+\left(2^5+2^7+2^9\right)+....+\left(2^{47}+2^{49}+2^{51}\right)\)

\(=12+2^4\left(2+2^3+2^5\right)+......+2^{46}\left(2+2^3+2^5\right)\)

\(=12+2^4.42+....+2^{46}.42\)

\(=12+7.3.2\left(2^4+...+2^{46}\right)\)

\(\Rightarrow M=\left[12+7.3.2\left(2^4+.....+2^{46}\right)\right]-2\)

\(=10+7.3.2\left(2^4+....+2^{46}\right)\)

Ta có:  \(7.3.2\left(2^4+...+2^{46}\right)⋮7\)mà 10 không chia hết cho 7

Suy M không chia hết cho 7

10 tháng 4 2017

M=1+3+3^2+3^3+^3+...+3^118+3^119

  =(1+3+3^2)+(3^3+3^4+3^5)+...+(3^117+3^118+3^119)

 =13+3^3(1+3+3^2)+...+3^117(1+3+3^2)

 =13+3^3.13+..+3^117.13

 =13(1+3^3+...+3^117) chia hết cho 13

Vậy Mchia hết cho 13

10 tháng 4 2017

ai chơi truy kích thì kết bạn vs mình nha 

rồi khi nào tạo phòng solo đao phong chibi với nhau 1 ván

10 tháng 11 2017

A = (2+2^2)+(2^3+2^4)+....+(2^119+2^120)

= 2.(1+2)+2^3.(1+2)+....+2^119.(1+2)

= 2.3+2^3.3+....+2^119.3

= 3.(2+2^3+....+2^119) chia hết cho 3