K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
9 tháng 1 2017

Lời giải:

-Nếu $p$ không chia hết cho $3\Rightarrow p\geq 2$

Ta biết rằng mọi số chính phương không chia hết cho $3$ thì chia $3$ dư $1$. Do đó $p^2+2\equiv 0\pmod 3$. Suy ra để $p^2+2$ là số nguyên tố thì $p^2+2=3\rightarrow p=1$ (vô lý)

Vậy $p$ thỏa mãn đề bài phải chia hết cho $3$, hay $p=3$. Thử vào $p^2+2=11,p^3+2=29\in\mathbb{P}$ nên ta có đpcm

9 tháng 2 2019

cảm ơn bạn thanghoa

AH
Akai Haruma
Giáo viên
14 tháng 1 2017

Lời giải:

Bài 1)

Nếu \(p^2-1\in\mathbb{P}\Rightarrow (p-1)(p+1)\in\mathbb{P}\)

Khi đó trong hai thừa số $p-1$ hoặc $p+1$ phải có một thừa số có giá trị bằng $1$, số còn lại là số nguyên tố. Vì $p-1<p+1$ nên \(p-1=1\Rightarrow p=2 \in\mathbb{P} \Rightarrow p+1=3\in\mathbb{P}(\text{thỏa mãn})\)

Khi đó \(8p^2+1=33\) là hợp số. Do đó ta có đpcm.

P/s: Hẳn là bạn chép nhầm đề bài khi thêm dữ kiện $p>3$. Với $p>3$ thì $p^2-1$ luôn là hợp số bạn nhé.

AH
Akai Haruma
Giáo viên
14 tháng 1 2017

Câu 2:

a) Câu này hoàn toàn dựa vào tính chất của số chính phương

Ta biết rằng số chính phương khi chia $3$ có dư là $0$ hoặc $1$. Mà \(p,q\in\mathbb{P}>3\Rightarrow \) $p,q$ không chia hết cho $3$. Do đó:

\(\left\{\begin{matrix} p^2\equiv 1\pmod 3\\ q^2\equiv 1\pmod 3\end{matrix}\right.\Rightarrow p^2-q^2\equiv 0\pmod 3\Leftrightarrow p^2-q^2\vdots3(1)\)

Mặt khác, vì số chính phương lẻ chia cho $8$ luôn có dư là $1$ nên

\(p^2\equiv 1\equiv q^2\pmod 8\Rightarrow p^2-q^2\equiv 0\pmod 8\Leftrightarrow p^2-q^2\vdots 8\)$(2)$

Từ $(1)$, $(2)$ kết hợp với $(3,8)=1$ suy ra \(p^2-q^2\vdots 24\)

b) Vì \(a,a+k\in\mathbb{P}>3\) nên $a,a+k$ phải lẻ. Do đó $k$ phải chẵn \(\Rightarrow k\vdots 2\) $(1)$

Mặt khác, từ điều kiện đề bài suy ra $a$ không chia hết cho $3$. Do đó $a$ chia $3$ dư $1$ hoặc $2$. Nếu $k$ cũng chia $3$ dư $1$ hoặc $2$ ( $k$ không chia hết cho $3$) thì luôn tồn tại một trong hai số $a+k$ hoặc $a+2k$ chia hết cho $3$ - vô lý vì $a+k,a+2k\in\mathbb{P}>3$

Do đó $k\vdots 3$ $(2)$

Từ $(1)$ và $(2)$ kết hợp $(2,3)=1$ suy ra $k\vdots 6$ (đpcm)

3 tháng 4 2016

1.p=3

2.a=40

3.31(bấm máy tính là ra mà bn)

22 tháng 3 2016

Bạn tham khảo bài của Đinh Tuấn Việt ở Câu hỏi của Tài Nguyễn Tuấn - Chuyên mục hỏi đáp - Giúp tôi giải toán. - Học toán với OnlineMath

25 tháng 1 2017

\(m;n\in N\Rightarrow m;n\ge0\)

\(p\) là số nguyên tố

Thỏa mãn \(\frac{p}{m-1}=\frac{m+n}{p}\Leftrightarrow p^2=\left(m-1\right)\left(m+n\right)\)

Do \(\left(m-1\right)\)\(\left(m+n\right)\) là các ước nguyên dương của \(p^2\)

Lưu ý: \(m-1< m+n\left(1\right)\)

\(p\) là số nguyên tố nên \(p^2\)chỉ có các ước nguyên dương là \(1,p\)\(p^2(2)\)

Từ \((1)\)\(\left(2\right)\) ta có \(m-1=1\)\(m+n=p^2\)

\(\Rightarrow m=2\)\(2+n=p^2\)

Vậy\(A=p^2-n=2\)

4 tháng 4 2016

Ta có: p4-q4-(p4-1)-(q4-1); 240 - 8.2.3.5. Ta cần chứng minh p4-1 chia hết cho 240

- Do p>5 nên p là số lẻ

+ Mặt khác: p4-1-(p-1)(p+1)(p2+1)

=> (p-1) và (p+1) là hai số chẵn liên tiếp => (p-1)(p+1) chia hết cho 8

+ Do p là số lẻ nên plà số lẻ => p2+1 chia hết cho 2

p > 5 nên p có dạng

+ p-3k+1 => p-1-3k+1-1-3k chia hết cho 3  =>p4 - 1 chia hết cho 3

..............................

Tương tự ta cũng có q4 - 1 chia hết cho 240 . 

Vậy (p4-1)-(q4-1) = p4 - qcho 240

4 tháng 4 2016

mik làm rùi nhưng chưa chắc chắn lắm leu

AH
Akai Haruma
Giáo viên
16 tháng 12 2016

Lời giải:

Ta có $3^m+5^n\equiv 3^m+1\equiv 0\pmod 4$ nên $3^m\equiv (-1)^m\equiv -1\pmod 4$ nên $m$ lẻ

Đặt $m=2k+1$ ( $k\in\mathbb{N}$) thì $3^m=3^{2k+1}\equiv 3\pmod 8$

$\Rightarrow 5^n\equiv 5\pmod 8$. Xét tính chẵn, lẻ ( đặt $n=2t,2t+1$) suy ra $n$ lẻ

Do đó $\Rightarrow 3^n+5^m\equiv (-5)^n+(-3)^m=-(5^n+3^m)\equiv 0\pmod 8$

Ta có đpcm

vì (x-2)^2*(y-3)^2=4

mà (x-2)^2 luôn>=0;(y-3)^2 luôn>=0;x,y là SNT nên 

suy ra  (x-2)^2*(y-3)^2=1*4=4*1(vì ko có số nào mũ 2=2)

trường hợp 1:(x-2)^2=1 và (y-3)^2=4

                     x=  3                   y=5

trường hợp 2:(x-2)^2=4 và  (y-3)^2=1

                          x=4(hợp số)loại

vậy số NT x là3;y là5