Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1,
\(A=\frac{\sqrt{x-3}}{2}\) có giá trị nguyên nên \(\left(\sqrt{x}-3\right)⋮2\)
Suy ra x là số chính phương lẻ.
Vì x < 30 nên\(x\in\left\{1^2;3^2;5^2\right\}\) hay \(x\in\left\{1;9;25\right\}\)
2,
Khi x là số nguyên thì \(\sqrt{x}\) hoặc là số nguyên (nếu x là số chính phương) hoặc là số vô tỉ (nếu x không phải số chính phương). Để \(B=\frac{5}{\sqrt{x-1}}\) là số nguyên thì \(\sqrt{x}\) không thể là số vô tỉ, do đó \(\sqrt{x}\) là số nguyên và \(\sqrt{x-1}\) phải là ước của 5 tức là √xx - 1 ∈ Ư(5). Để B có nghĩa ta phải có x \(\ge\)0 và x\(\ne\) 1. Ta có bảng sau:
\(\sqrt{x-1}\) | 1 | -1 | 5 | -5 |
\(\sqrt{x}\) | 2 | 0 | 6 | -4(loại) |
\(x\) | 4 | 0 | 36 |
Vậy x\(\in\){4;0;36} (các giá trị này đều thoả mãn điều kiện x \(\ge\) 0 và x\(\ne\) 1).
1) \(P=\frac{2}{6-m}\left(m\ne6\right)\)
Để P có GTLN thì 6-m đạt giá trị nhỏ nhất
=> 6-m=1
=> m=5 (tmđk)
Vậy m=5 thì P đạt giá trị lớn nhất
Để \(\frac{7}{\sqrt{x-1}}\in Z\)thì \(\sqrt{x-1}\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
\(\Rightarrow\orbr{\begin{cases}\sqrt{x-1}=1\\\sqrt{x-1}=7\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=50\end{cases}}}\)
Vậy........