Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M N D
Vẽ tam giác đều AMN trên nửa mặt phẳng bờ AM chứa điểm B.Kẻ BD vuông góc với AM tại D.
Ta có:\(\widehat{NAB}=\widehat{NAM}-\widehat{BAM}=60^0-\widehat{BAM}\)
\(\widehat{MAC}=\widehat{BAC}-\widehat{BAM}=60^0-\widehat{BAM}\)
\(\Rightarrow\widehat{NAB}=\widehat{MAC}\)
Xét \(\Delta\)AMC và \(\Delta\)ANB có:AM=AN,^NAB=^MAC,AB=AC => \(\Delta AMC=\Delta ANB\left(c-g-c\right)\Rightarrow\hept{\begin{cases}AN=AM=MN=1\\BN=CM=\sqrt{3}\end{cases}}\)
Ta có:\(BN^2+MN^2=\sqrt{3}+1^2=4=BM^2\)
\(\Rightarrow\Delta BNM\) vuông tại N.
\(\Rightarrow\widehat{BNM}=90^0,BM=2MN\)
\(\Rightarrow\widehat{NMB}=60^0\Rightarrow\widehat{AMB}=120^0\)
Mà \(\Delta ANB=\Delta AMC\Rightarrow\widehat{ANM}=\widehat{AMC}=60^0+60^0=120^0\)(^AMC có khác gì ^CMA đâu má)
Ta có:\(\widehat{BMD}=180^0-\widehat{BMA}=180^0-120^0=60^0\)
\(\Rightarrow\widehat{MBD}=30^0\Rightarrow MB=2MD\Rightarrow MD=1\Rightarrow AD=2\)
Xét \(\Delta\)BNM và \(\Delta\)BDM có:BM là cạnh chung,^NBM=^DBM(cùng bằng 30 độ) => \(\Delta BNM=\Delta BDM\left(ch-gn\right)\)
\(\Rightarrow BN=BD=\sqrt{3}\)
Áp dụng định lý Pythagore vào tam giác vuông ABD ta được:\(AB^2=AD^2+BD^2=2^2+\sqrt{3}^2=4+3=7\)
\(\Rightarrow AB=\sqrt{7}\).Mà \(\Delta\)ABC đều nên \(AB=BC=CA=\sqrt{7}\)
tuổi con HN là :
50 : ( 1 + 4 ) = 10 ( tuổi )
tuổi bố HN là :
50 - 10 = 40 ( tuổi )
hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi
ta có sơ đồ : bố : |----|----|----|
con : |----| hiệu 30 tuổi
tuổi con khi đó là :
30 : ( 3 - 1 ) = 15 ( tuổi )
số năm mà bố gấp 3 tuổi con là :
15 - 10 = 5 ( năm )
ĐS : 5 năm
mình nha
trên nửa mặt phẳng bờ AM ko chứa điểm B dựng tam giác ADM zuông cân tại đỉnh A
ta có AD=MA=2cm
\(\widehat{AMD}=45^0;\widehat{DMC}=\widehat{AMC}-\widehat{AMD}=90^0\)
Xét tam giác ADC zà tam giác AMB có
\(\hept{\begin{cases}AD=AM\\AC=Ab\left(gt\right)\\\widehat{DAC}=\widehat{MAB}\end{cases}}\)(cùng phụ zới góc CAM , ( cái này là giải thích tại sao góc DAC= góc MAB nha)
=> 2 tam giác trên = nhau
=>\(DC=MB\)
tam giác AMD zuông tại A nên \(MD^2=MA^2+AD^2\)
=>\(MD^2=2^2+2^2=8\)
tam giác MDC zuông tại M nên
\(DC^2=MD^2+MC^2\Leftrightarrow3^2=8+MC^2=>MC=1\)