K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2020

a) Vận dụng hằng đẳng thức và nhân đơn thức với đơn thức nha bạn

( 4x+3)2 - 2x(x+6) - 5(x-2)(x+2)

= [ (4x)2+2*4x*3+32] - ( 2x2 + 12x) - 5(x2-22)

= (16x2+24x+9) - ( 2x2+12x) - 5( x2-4)

= 16x2+24x+9-2x2-12x-5x2+20

= 9x2+12x+29 (1)

b) Thay vào là ra nha

Thay x= -2 vào (1), ta được:

M= 9* (-2)2+12*(-2)+29

   = 9*4+12*(-2)+29

    = 36+(-24)+29

    = 31

Vậy M= 31 tại x= -2

c) Từ kết quả ở phần a, ta được: 

M= 9x2+12x+29

Ta có :

9x2 \(\ge\)0 với mọi x

12x \(\ge\)0 với mọi x 

29>0\(\Rightarrow\)Biểu thức M luôn dương. ( điều phải chứng minh ).

CHÚC BẠN HỌC TỐT NHA!!

20 tháng 10 2016

a) Ta có: \(m=\left(4x+3\right)^2-2x\left(x+6\right)-5\left(x-2\right)\left(x+2\right)=16x^2+24x+9-2x^2-12x-5\left(x^2-4\right)\)

\(=14x^2+12x+9-5x^2+20=9x^2+12x+29\)

b) \(9x^2+12x+29=\left(9x^2+12x+16\right)+12=\left(3x+4\right)^2+12\ge12\)

Dấu "=" xảy ra khi 3x+4=0 => x=\(\frac{-4}{3}\) => đa thức trên luôn dương.

 

25 tháng 12 2020

ko có biết

`#3107.\text {DN}`

a)

\((2x-3)^2-x(3-x)+5x-4x^2+17\)

`= 4x^2 - 12x + 9 - 3x + x^2 + 5x - 4x^2 + 17`

`= x^2 - 10x + 26`

b)

`M = x^2 - 10x + 26`

`= [(x)^2 - 2*x*5 + 5^2] + 1`

`= (x - 5)^2 + 1`

Vì `(x - 5)^2 \ge 0` `AA` `x => (x - 5)^2 + 1 \ge 1` `AA` `x`

Vậy, giá trị biểu thức M luôn có giá trị dương với mọi x.

27 tháng 7 2016

Bài 4 :

Thay x=y+5 , ta có :

a ) ( y+5)*(y5+2)+y*(y-2)-2y*(y+5)+65

=(y+5)*(y+7)+y^2-2y-2y^2-10y+65

=y^2+7y+5y+35-y^2-2y-2y^2-10y+65

= 100

Bài 5 :

A = 15x-23y

B = 2x-3y

Ta có : A-B

= ( 15x -23y)-(2x-3y)

=15x-23y-2x-3y

=13x-26y

=13x*(x-2y) chia hết cho 13 

=> Nếu A chia hết cho 13 thì B chia hết cho 13 và ngược lại 

9 tháng 8 2017

A= x^2-6x+10

A=x^2-3x-3x+9+1

A=x(x-3)-3(x-3)+1

A=(x-3)(x-3)+1

A=(x-3)^2+1

Vì (x-3)^2 \(\ge\)0\(\forall x\)

->(x-3)^2+1\(\ge\)1

=>ĐPCM

16 tháng 7 2020

1. a) \(A=x\left(x-6\right)+10=x^2-6x+9+1=\left(x-3\right)^2+1\)

Vì \(\left(x-3\right)^2\ge0\forall x\)\(\Rightarrow\left(x-3\right)^2+1\ge1\)

hay \(A\ge1\)\(\Rightarrow\)A luôn dương ( đpcm )

b) \(B=x^2-2x+9y^2-6y+3=\left(x^2-2x+1\right)+\left(9y^2-6y+1\right)+1\)

\(=\left(x-1\right)^2+\left(3y-1\right)^2+1\)

Vì \(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\\left(3y-1\right)^2\ge0\forall y\end{cases}}\)

\(\Rightarrow\left(x-1\right)^2+\left(3y-1\right)^2\ge0\forall x,y\)

\(\Rightarrow\left(x-1\right)^2+\left(3y-1\right)^2+1\ge1\forall x,y\)

hay \(B\ge1\)\(\Rightarrow\)B luôn dương ( đpcm )