Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M=5ax2y2+(-1/22y2)+7ax2y2+(-x2y2)
M=[5a+(-1/2a)+7a+(-1)]x2y2
M=(23/2a-1)x2y2
a; Nếu M không âm với mọi x, y thì (23/2a-1) phải lớn hơn hoặc bằng 0 hay a lớn hơn hoặc bằng 23/2
b; Tương tự thì (23/2a-1) phải bé hơn hoặc bằng 0 hay a bé hơn hoặc bằng 23/2
a) Cho \(A=\left(a-7\right)x^8y^{10}\)
Theo đầu bài ta có: \(x^8>0;y^{10}>0\)
để \(A>0\)
\(\Rightarrow a-7>0\)
\(\Rightarrow a>7\)
b) Theo đầu bài ta có: \(x^8>0;y^{10}>0\)
để A<0
=> a -7 < 0
=> a < 7
Bài 1 :
Ta có : \(15x^4y^n.\left(-2x^5y^9\right)=30x^9y^{17}\)
=> \(15x^4.\left(-y\right)^n.\left(-2\right).\left(-x\right)^5.\left(-y\right)^9=30\left(-x\right)^9.\left(-y\right)^{17}\)
=> \(30\left(-x\right)^9.\left(-y\right)^{n+9}=30.\left(-x\right)^9\left(-y\right)^{17}\)
=> \(\left(x\right)^9.\left(-y\right)^{n+9}=\left(-x\right)^9\left(-y\right)^{17}\)
=> \(x^9y^{n+9}=x^9y^{17}\)
- TH1 : \(x,y=0\)
=> \(0^{n+9}=0^{17}\) ( Luôn đúng \(\forall n\) )
=> \(n\in R\)
- TH2 : \(x,y\ne0\)
=> \(y^{n+9}=y^{17}\)
=> \(n+9=17\)
=> \(n=8\)